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Chapter 1

Introduction

Mechanics is an ancient subject that has been studied by civilizations throughout history all
around the world, with many applications intended in physics and mostly engineering. From
the beginning of my career in physics, I was fascinated by the study of motion of physical
objects in space-time, ie. the dynamical perspective of mechanics. Its various forms include
classical mechanics, and relativistic mechanics which have been discussed in this thesis.
Classical mechanics can be said to derive from a more general theory of physics, known
as relativistic mechanics, which studies mechanics from a more geometric point of view in
both special and general versions. In all cases, mechanics revolves around trajectories, which
according to Hamilton’s principle of least action, define the path of least action between any
two chosen points on the particle’s journey. Such trajectories are geometrically known as
geodesics.

A geodesic defines a trajectory with the shortest distance geometrically between any two
chosen points that mark the start and end of a particle’s trajectory, the study of which has
received significant attention in mechanics in all its forms. From it, the Euler Lagrange
equations are derived that produce all the equations of motion for a given system. Under
certain circumstances, such as a symmetry available due to a cyclical variable, we can modify
geodesics to obtain a simpler picture of the trajectory of the particle. Furthermore, in the
topic of Relativity, the null geodesic is specially relevant because the speed of traversal along
such trajectories remains unchanged in all inertial frames, which is reflected in Einstein’s
postulates.

The subject of Integrable systems deals with non-linear differential equations that ideally
are analytically solvable. This implies reducibility of the solution to a finite number of
algebraic operations and integrations. Realistically, it is difficult to find such systems that
are exactly solvable into explicit solutions. Such systems have been studied as early as in
the fundamental works of Euler, Liouville, Riemann, Poincaré, and others. Here, wherever
we discuss analysis of the integrability of the system, we merely imply the solvability of the
available differential equations. One example of integrable systems in classical mechanics is
the topic of action-angle variables.

While Euclidean spaces are not directly used to describe space-times or gravity, com-
parison of solutions on such spaces that are similar to problems on Minkowski spaces under
a Wick’s rotation, can help provide solutions. They are useful playgrounds for studying
self-dual mechanical systems, some of which are called instantons. Self-dual metrics with
Euclidean signature describe gravitational instantons, which comprise a subset of Yang-Mills
instantons that derive from self-dual Yang-Mills (SDYM) gauge fields. The significance of
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SDYM in integrable systems arises from R.S. Ward’s conjecture that perhaps all solvable
or integrable partial differential equations are merely various reductions of the SDYM equa-
tions. Thus, the SDYM system is a generator of integrable systems that provides a general
geometric foundation for their analysis. They have numerous applications in mathemat-
ics and physics, appearing in gauge theory, classical general relativity, and the analysis of
4-manifolds.

One such reduction produces the general Darboux-Halphen system, of which a special
case has applications in mathematical physics in relation to the study of magnetic monopole
dynamics, self-dual Einstein equations, and topological field theory. One example of great
interest is the Taub-NUT space-time, discussed in this thesis in great detail.

Gravity has been studied, ever since its discovery as a force, to describe planetary motion
in the subject of astronomy. Johannes Kepler prescribed three laws describing planetary
motion between 1609 and 1619, improving Nicolaus Copernicus’ heliocentric theory, using
elliptic orbits instead of circular ones. Isaac Newton further showed in 1687 that Kepler’s
laws under a good approximation was equivalent to the combination of his three laws of
motion and his law of universal gravitation, which defines the dependence of gravitational
force on mass and distance via the inverse square law. Upon presentation of Newton’s work
in his book Principia, in 1686, Robert Hooke claimed that Newton had obtained the inverse
square law from him.

The inverse square law governing the magnitude over distance was formulated by Newton,
analogous to the Coloumb force law in electrostatics. While it may exhibit laws similar to
those of electrostatics and magnetism, such as the inverse square force law, and the Poisson’s
equation, gravity can be supposed to be a consequence of geometry. This is because the
formula for acceleration lacks any physical quantities, unlike its equivalent in electrostatics,
which involves charge and mass terms. This makes gravity more universal, since all objects,
massive or not (massless like photons) will abide by this force law. Interestingly, in classical
mechanics, according to Bertrand’s theorem, a mechanical system governed by the inverse
square law force is conformally dual to a mechanical system driven by Hooke’s law force for
harmonic oscillators.

General Theory of Relativity pioneered and published by Albert Einstein in 1915, a
geometric theory of gravitation, has superseded Newton’s law of gravitation, and is an indis-
pensable part of modern physics, such as astrophysics, cosmology, string theory and particle
physics. It also has practical uses in Global Positioning System. It tries to describe gravity
not as a physical force, but as a consequence of the curvature of space-time. This curvature
can be defined as a perturbation of flat space-time, resulting in a deformation of geodesics
from straight lines for flat spaces. Furthermore, the geodesic equation in General Relativity
is a non-linear differential equation that is not always directly solvable, a topic elaborated
in the subject of Integrable Systems.

My thesis has been organized as follows:

We start with the study of reductions of geodesics via projection onto a hypersurface
characterised by a conserved quantity. The formulation of this reduction theory, known
as the Jacobi-Maupertuis theory, was described only for autonomous mechanical systems.
Its relativistic version was shown consistent with the classical version under non-relativistic
approximations, and the formulation was extended to time-dependent systems. The au-
tonomous system formulation was applied to the Kepler and Liénard mechanical systems,
and analyzed.
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After that, we undergo an exercise during my foray into the study of instantons, involving
exploration of the Schwarzschild instanton. This exercise starts by considering the Euclidean
Schwarzschild metric, and analyzing it geometrically and topologically.

Then I proceeded to study the mechanics of self-dual curved spaces starting with the study
of self-dual Bianchi-IX metric and the related systems. This study extends to equations that
derive from the reduction of SDYM equation, finally followed by a detailed geometric and
dynamical analysis of the Taub-NUT system, one special case of the self-dual Bianchi-IX
system.

The final area of my work focuses on generalising the formulation of relativistic mechanics
from particle on flat space to particle on curved space due a single gravitational potential,
and comparison with a pre-existing ad-hoc formulation. This formulation starts with a
metric where the gravitational potential acts as a perturbation of flat space. A modified
local Lorentz transformation is also defined on such spaces.

3



Chapter 2

Jacobi-Maupertuis metric as
reduction of geodesic flow

Authors: S. Chanda, G.W. Gibbons and P. Guha.

1. J. Math. Phys. 58 (2017) 032503, arXiv: 1612.00375

2. Int. J. Geom. Methods in Mod. Phys. 14 (Iss. 07) (2017) 1730002, arXiv:
1612.07395.

2.1 Introduction

Riemann studied concepts like curvature and geodesics by introducing Riemannian manifolds
in his Habilitationsthesis, where he defined an inner product on every tangent space of
a manifold. Such inner products were defined via a structure known as the metric that
defines infinitesimal length elements locally on the tangent space, which can be integrated
to compute a given path’s length [1, 2] between any two points on the manifold. The
shortest path in terms of integrated path length is defined as the geodesic, which according
to Maupertuis, is effectively the path of least action, comparable to Fermat’s path of least
time for light [3]. On these manifolds, the form of the action integrals along geodesics is
known as the Maupertuis form of action [4] along geodesics, about which the integrand is an
exact differential. In this chapter we will focus on geodesics and their projection onto the
constant energy hypersurface.

The Jacobi-Maupertius (JM) metric is a conformal projection of the a space-time ac-
tion functional onto a fixed energy spatial hypersurface, reducing the problem to a spatial
geodesic [1], whose momentum is confined to a unit momentum sphere. In other words, the
Jacobi-Maupertuis metric reformulates Newton’s equations as geodesic equations for a Rie-
mannian metric which degenerate at the Hill boundary [5]. The Jacobi metric formulation
is a procedure for producing a geodesic from a given Hamiltonian. Such trajectories of a
Hamiltonian system can be viewed as geodesics of a corresponding configuration space or its
enlargement under some constraints. Since we parameterize with respect to time τ = t, the
term quadratic in time is present as the potential.

In the theory of integrable systems, each available first-integral or conserved quantity
reduces the degrees of freedom of the mechanical problem one has to deal with by one.
Similarly in the Jacobi-Maupertuis theory, the conserved Hamiltonian enables the conversion
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of the classical action into a geodesic of reduced dimensionality. Since such Hamiltonians
often already arise from Lagrangians originating from a metric, the Jacobi metric formulation
is a reduction of a geodesic from higher dimensions to lower dimensions.

Recently, it was shown [6] that free motion of massive particles in static space-times
is given by geodesics of an energy-dependent Riemannian metric on the spatial sections
analogous to Jacobi’s metric in classical dynamics. Recently this result has been extended
[7] to explore the Jacobi metrics for various stationary metrics. In particular, the Jacobi-
Maupertuis metric is formulated for time-dependent metrics by including the Eisenhart-
Duval lift, known as the Jacobi-Eisenhart metric. An important application to gravity was
shown [8] by Ong who studied the curvature of the the Jacobi metric for the Newtonian
n-body problem. For n = 2, the problem reduces to the Kepler’s problem of the relative
motion and the relevant Jacobi metric is up to an unimportant overall constant factor.

The Kepler system, derived by Johannes Kepler in 1609, as interpreted by Newton, is a
3-dimensional integrable system for an inverse square law force describing elliptic trajectories
[9, 10]. It is related to the isotropic oscillator system via a canonical type transformation
known as the Bohlin transformation, resulting in many properties of the two systems being
inter-related. It has many integrals of motion such as the angular momentum, the Hamil-
tonian and the Runge-Lenz vector. The last two translate into the equivalent conserved
quantities known as the Fradkin tensors for the oscillator system under Bohlin’s transfor-
mation. Recently Kepler problem has been studied on noncommutative κ -spacetime and
corresponding Bohlin-Arnold duality [11]. In particular, regularization of the Kepler problem
on κ -spacetime in several different ways [12]. Regularization is a mathematical procedure
to cure this singularity. A nice clear treatment of regularizing the Kepler problem was done
by Moser in his 1970 paper [13], the treatment of Moser relates the Kepler flow for a fixed
negative energy level to the geodesic flow on the sphere Sn. A lucid analysis of the geomet-
rical aspects of Kepler problem can be found in Milnor [14]. Belbruno extended the cases
of positive energy to negative energy, in correspondence to the 3-hyperboloid H3, and zero
energy which corresponds to 3-dimensional Euclidean space [15].

In 1941, G. Randers [19] introduced a Finsler metric by modifying a Riemannian metric
g = gij dx

i ⊗ dxj by a linear term b = bi(x)dxi, the resulting norm on the tangent space is
given by

F (x, y) =
√
gijyiyj + bi(x)yi, y = yi∂xi ∈ TxM.

Randers metrics have received much attention [20, 21] lately because these yield the solu-
tions to Zermelo’s problem of navigation, most recently, it has been extended to quantum
navigation problem of finding the time-optimal control Hamiltonian [22]. In [23], E. Zermelo
studied a classical control problem to find a deviation of geodesics under the action of a
time-dependent vector field.

In the Zermelo construction, we can describe a given stationary metric gij in terms of a
vector field or drift (wind) W i, and a another different metric hij, describing Zermelo data
{hij,W i} [24]. For a time-independent wind, Shen [25] showed that trajectories of least
travel time are particular Finsler geometry geodesics known as Rander’s metric. This model
physically describes fluid dynamical analogue models of a rotating black hole akin to a test
particle drifting with a spinning fluid vortex. A stationary space-time rewritten into Zermelo
form will partially involve Painlevé-Gullstrand form [26, 27].

In this chapter, in section 2.2 we will first explore three different, but equivalent ap-
proaches to obtaining the Jacobi metric. In the first one, we start with the regular formula-
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tion of the action with the Lagrangian for autonomous mechanical systems. We shall cover
two ways of formulating the Jacobi metric with this approach: by equating the action to a
Lorentz invariant line element integral, and by redefining the system from a constant energy
hypersurface to a unit momentum hypersurface, where the kinetic energy is rescaled by a
conformal factor to unity [1, 16].

We then proceed in section 2.3 to obtain the Jacobi metric purely from the line ele-
ment integral of Rander’s form of stationary metric, essentially reproducing the formulation
used in [17], while the author in [17] employed a static metric and a Zermelo form for the
stationary metric [18]. Here, we will go a step further, and apply the non-relativistic ap-
proximation to this result, thereby reproducing the previous result and equating the two
formulations. Afterwards, in section 2.4, we apply the formulation to various examples such
as Schwarzschild, Taub-NUT, Bertrand and Kerr spacetimes.

In section 2.5 we shall next obtain the Jacobi metric for time-dependent mechanical
systems. So far, the formulation has only been applied to time-independent static and
stationary metrics. The difficulty in application to time-dependent metrics is the absence
of a constant energy hypersurface. To resolve this issue, we modify the metric via the
Eisenhart-Duval lift introduced by Eisenhart [28] and rediscovered by Duval et. al. [29].
This means introducing an extra dimension via a dummy variable and a fixed hypersurface
on which to project the geodesic, thus relating n dimensional mechanics to geodesics on
n+ 2 dimensional space. First, we demonstrate the utility of the Eisenhart-Duval lift in this
context, by describing autonomous and non-autonomous systems with and without the lift
applied, then deduce the formulation from the line-element integral, and finally apply limits
for a non-relativistic approximation. We propose calling the result the Jacobi-Eisenhart
metric. Finally, in section 2.6, we obtain the same results using projective transformations
and compare them to verify consistency of the results.

Finally, in section 2.7 the Kepler system will be shown to be geodesic flow on constant
curvature surfaces. Here, we shall demonstrate how such a projection to a fixed energy surface
following a canonical transformation is the Bohlin’s transformation [30] that converts the
oscillator system into the Kepler system. This will be followed by a discussion on application
in Houri’s canonical transformation [31]. First we shall couple it with Milnor’s construction
to study the preservation of the form of geodesic flows under such canonical transformations.

2.2 Jacobi-Maupertuis Theory: Preliminaries

Let g be a Riemannian metric on the manifold M . If ẋ ∈ TxM , then its length is

||ẋ|| :=
√
gx(ẋ, ẋ).

If γ : [a, b] → M is a smooth curve in M , then
dγ

dτ
∈ Tγ(τ)M , which allows us to define the

length of the curve γ [1, 2] as

l(γ) :=

∫ b

a

∣∣∣∣∣∣∣∣dγ(τ)

dτ

∣∣∣∣∣∣∣∣
γ(t)

dτ.

where for the geodesic, the following condition holds:

δ l(γ) = 0.
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The geodesic can also be defined as follows:

Definition 2.2.1. A geodesic in a pseudo-Riemannian manifold (M, g) is a solution to the
Euler-Lagrange equations

[L]x :=
d

dt

(
∂L
∂ẋi

)
− ∂L
∂xi

= 0. (2.2.1)

where the Lagrangian L : TM → R is defined by L = 1
2
gx(ẋ; ẋ).

Consider an action integral I12 along a path parameterized by τ between two points 1 and
2, defined by

I12 =

∫ 2

1

dI =

∫ 2

1

dτ L. (2.2.2)

where L = L(x, ẋ) is a function quadratic in velocity, the position being x and the velocity
being ẋ. The geodesic is characterised by the Euler-Lagrange equation (2.2.1) which is
derivable from

δI12 =

∫ 2

1

δ(dI) =

∫ 2

1

dτ δL(x, ẋ) = 0

This means that if we vary the line integral (2.2.2) and apply (2.2.1), we have

δI12 =

∫ 2

1

dτ

(
∂L

∂xi
δxi +

∂L

∂ẋi
δẋi
)

=

∫ 2

1

dτ

[
d

dτ

(
∂L

∂ẋi

)
δxi +

∂L

∂ẋi
d

dτ

(
δxi
)]

=

∫ 2

1

dτ
d

dτ

(
∂L

∂ẋi
δxi
)
,

∴
∫ 2

1

δ(dI) =

∫ 2

1

d

(
∂L

∂ẋi
δxi
)
.

Since we are considering the path of extremal variation, we are dealing with an integral that
is locally exact about the geodesic, (ie. δ(dI) = d(δI)). This means on substituting the

momentum pi =
∂L

∂ẋi
, the effective integral along the geodesic and the effective Lagrangian

Lgeod along the geodesic are given by∫ 2

1

d(δI) =

∫ 2

1

d

(
∂L

∂ẋi
δxi
)

⇒ δI =
∂L

∂ẋi
δxi ⇒ dI =

∂L

∂ẋi
dxi,

⇒ I12 =

∫ 2

1

dI =

∫ 2

1

∂L

∂ẋi
dxi =

∫ 2

1

dτ

(
∂L

∂ẋi
ẋi
)

=

∫ 2

1

pidx
i,

∴ Lgeod =
∂L

∂ẋi
ẋi = piẋ

i. (2.2.3)

where the effective line integral is known as the Maupertuis form [4] of the line integral.

2.2.1 Classical Jacobi metric from Natural Hamiltonian

Mechanics has been historically studied from two approaches: Lagrange’s and Hamilton’s.
This results in two different, yet equivalent formulations of the equations of motion to de-
scribe geodesics. Since we have shown how to formulate the lifted Hamiltonian and La-
grangian, it is natural to explore how the equations of motion take shape under such formu-
lations, and the effect on conserved quantities.
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If one starts with a static metric (g0i = 0) on a given n+ 1 dimensional space-time

dl2 = gµνdx
µdxν = g00 dt

2 + gij dx
idxj.

it is a simple matter to formulate the corresponding Lagrangian describing the dynamics on
that space. Such dynamical systems under affine parametrization τ = x0 = t are defined by
the mechanical action and its related Lagrangian:

S =

∫ τ2

τ1

dτ L(x, ẋ), (2.2.1.1)

L(x, ẋ) =
m

2
gµν(x)ẋµẋν =

m

2
gijẋ

iẋj − U(x) ≡ T − U(x), (2.2.1.2)

and the Euler-Lagrange equation is given by:

ẍi = −
∑
jk

Γijkẋ
jẋk −

∑
l

gil(x)∂lU(x) . (2.2.1.3)

If the Lagrangian can have a natural form given by (2.2.1.2), then so will the Hamiltonian
when momentum has been solved for velocity and substitute back in the Hamiltonian. The
natural Hamiltonian for a time-independent dynamical system that acts as the generator for
time-translations is a conserved quantity is given by a Legendre transformation

H(x,p) =
n∑
i=1

piẋ
i − L(x, ẋ) pi =

∂L

∂xi
= gij(x)ẋj.

H(x,p) =
1

2m
gij(x)pipj + U(x) ≡ T (x, ẋ) + U(x) = E. (2.2.1.4)

where the dynamical equations or Hamilton’s equations of motion are:

ẋi =
∂H

∂pi
=
gij(x)

m
pj,

ṗi =
∂H

∂xi
=

1

2m

∂gij(x)

∂xi
pipj +

∂U

∂xi
.

(2.2.1.5)

This means that the Lagrangian of (2.2.1.2) can be written as

L = 2T − E.

and thus the zero-variation equation of the action (2.2.1.1) can be written as

δS = δ
(∫ τ2

τ1

dτ L
)

= δ

[∫ τ2

τ1

dτ (2T − E)

]
= 2

∫ τ2

τ1

dτ δT.

Thus, the effective action is given as:

Seff =

∫ τ2

τ1

dτ 2T. (2.2.1.6)

Being the generator of time translations, the time derivative of any functions is given by
Poisson Bracket operations ḟ = {f,H}. Naturally, any conserved quantities will be in
involution with this Hamiltonian, itself being a conserved quantity:

Q̇ = {Q,H} = 0.
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This Hamiltonian is made up of 2 parts; quadratic and potential. In the next section, we
shall see how to reduce it to being homogeneously quadratic.

From (2.2.1.6), we can see that for conserved quantities, an alternative formula for the
action will suffice to describe geodesics with conserved energies. This effective Lagrangian
based action integral may be equated to a metric line-element integral [4] using (2.2.1.4) as
follows:

Seff =

∫ τ2

τ1

dτ 2T =

∫ τ2

τ1

dτ
√

2T
√

2T =

∫ τ2

τ1

dτ
√

2(E − U)
√
mgij(x)ẋiẋj,

Seff =

∫ τ2

τ1

dτ
√

2m(E − U)gij(x)ẋiẋj ≡
∫ 2

1

dτ

√(
dleff
dτ

)2

.

Thus, the effective Jacobi metric can be given as

dl2eff = Ldt2 = 4 (E − U(x))Tdt2 T =
m

2
gij(x)ẋiẋj,

⇒ dl2eff = 2m (E − U) gij(x)dxidxj.

We can view the solution curves of natural mechanical systems as the geodesics of a special
metric. This process allows us to convert the Hamiltonian n + 1 dimensional system into a
spatial n-dimensional geodesic with a rescaled conserved Hamiltonian:

gij(x)pipj = 2m (E − U(x)) ⇒ H̃ =
gij(x)

2m (E − U(x))
pipj = 1. (2.2.1.7)

We have essentially taken the kinetic energy part of the total conserved energy of the system,
and rescaled it with a conformal factor that is its inverse into an equivalent constrained
system with unit momentum sphere. This means that the metric and its inverse transform
into the Jacobi metric as follows:

g̃ij(x)pipj = 1,

g̃ij(x) =
gij(x)

2m [E − U(x)]
⇒ g̃ij(x) = 2m [E − U(x)] gij(x).

(2.2.1.8)

where the kinetic energy part of the system serves as the conformal factor. We can summarize
the details with the following theorem.

Theorem 2.2.1 (Jacobi-Maupertuis principle). Let T : TM → R be a smooth pseudo-
Riemannian metric and let U : M → R be a smooth potential energy function. Let t 7→
x(t), I → M be a curve in M such that H

(
x(t), dx(t)

dt

)
= E ∈ R and U(x(t)) 6= E for all

t, and σ(t) 7→ x(σ), J → M be another curve in M such that H
(
x(σ), dx(σ)

dσ

)
= 1 for all σ.

Then the map t 7→ σ(t), I → R defined by

σ(t) = 2m

∫ t

0

dt [E − U(x(t))] .

is a diffeomorphism onto its image J . We denote its inverse by σ 7→ t(σ); J → I. Moreover,
the curve t 7→ x(t) in M is a solution to the Euler-Lagrange equation [T − U ]x = 0 (see
2.2.1), iff the curve σ 7→ x(t(σ)), J →M is a geodesic of the “Jacobi metric”

T̃ = 2m (E − U)T.
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Figure 2.1: Example of Jacobi metric for projectile in Earth’s gravity

Proof. So long as we have
dσ(t)

dt
= 2m [E − U(x(t))] 6= 0

the inverse function theorem guarantees that t 7→ s(t) is a diffeomorphism onto its image M ,
reparameterizing the the curve as s 7→ x(s) = x(t(s)). Thus, the velocity upon differentiation
wrt t is:

dxi

dt
=
dxi

dσ

dσ

dt
= (E − U(x))

dxi

dσ
(2.2.1.9)

and the acceleration from (2.2.1.3) can be re-written as:

ẍi =
dσ

dt

d

dσ

(
dσ

dt

dxi

dσ

)
= (E − U(x))2 d

2xi

dσ2
− (E − U(x)) ∂jU(x)

dxi

dσ

dxj

dσ
(2.2.1.10)

and the Euler-Lagrange equation (2.2.1.3) transforms as:

(E − U(x))
d2xi

dσ2
− ∂jU(x)

dxi

dσ

dxj

dσ
= −

∑
jk

(E − U(x)) Γijk
dxj

dσ

dxk

dσ
−
∑
l

g̃il∂lU(x)

Γijk =

[
1

2 (E − U(x))

(
∂jU(x)δik + ∂kU(x)δij − g̃im∂mU(x)g̃jk

)
+ Γ̃ijk

]
,

(E − U(x))
d2xi

dσ2
− ∂lU(x)

dxl

dσ

dxi

dσ
= −

∑
jkl

[
(E − U(x)) Γijk

dxj

dσ

dxk

dσ
+ g̃il∂lU(x)

]
= −

∑
jkl

[
∂lU(x)

dxl

dσ

dxi

dσ
− g̃im∂mU(x)

(
1

2
g̃jk

dxj

dσ

dxk

dσ

)
+ g̃il∂lU(x)

]
−
∑
jk

(E − U(x)) Γ̃ijk
dxj

dσ

dxk

dσ
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d2xi

dσ2
= −Γ̃ijk

dxj

dσ

dxk

dσ
(2.2.1.11)

Thus, the Euler-Lagrange equation has been mapped to a regular geodesic equation for the
Jacobi metric (2.2.1.8). The Jacobi-Maupertius principle holds for any system with non-zero
kinetic energy.

One may ask why according to (2.2.1.4) we are not substituting T (x, ẋ) = E − U(x).
The reason is that doing so in (2.2.1.8) would effectively make the metric tensor components
velocity dependent

g̃ij(x, ẋ) = 2mT (x, ẋ)gij(x).

like the Finsler metric. Naturally, for a transformed Hamiltonian, the dynamical description
should also change.

2.2.2 Extended Hamiltonian formulation

The Maupertuis transformation XH → X̃H̃ relates two vector field on M . If t and σ are

time along trajectories of the vector fields XH and X̃H̃ , then

dσ = (E − U(x))dt (2.2.2.1)

The distinguished role of the time t is not desirable in the general case of non-autonomous
Hamiltonian systems. We therefore introduce an evolution parameter s to parameterize time
evolution of the system. In the extended formalism, time t is treated as an ordinary canonical
function t(s) ≡ x0(s) of an evolution parameter s. We may conceive a ‘new’ momentum
coordinate p0(s) in conjunction with the time as an additional pair of canonically conjugate
coordinates. The extended HamiltonianH(x0, p0, x

i, pi) is defined as a differentiable function
on the cotangent bundle T ∗Q = T ∗(R ×M) endowed with a chart (p0, pi) ∈ T ∗x0,xiQ with
∂H
∂s

= 0. It is given by H(x0, p0, x
i, pi) = H(xi, pi, x

0) + p0, where x0 and p0 are conjugate
variables and p0 = −H. The extended phase space admits a Liouville form (or integral
invariant of Poincaré-Cartan)

θH = p0dt+ pidx
i (2.2.2.2)

and the Hamiltonian flow is completely determined by the conditions:

〈XH, dt〉 = 1 and XHydθH = 0, where XH = ẋµ
∂

∂xµ
+ ṗµ

∂

∂pµ
. (2.2.2.3)

Invoking Hamilton’s equations of motion, and keeping in mind that ṫ = 1, p0 = −q(t) and
the Maupertuis form of action according to (2.2.3), we have

L(xµ, ẋµ) =
n∑
µ=0

pµẋ
µ =

n∑
i=1

piẋ
i + p0ṫ. (2.2.2.4)

we have the extended Hamiltonian given below:

H(xi, pi, t) =
n∑
µ=0

pµẋ
µ − L(xµ, ẋµ) =

[
n∑
i=1

piẋ
i − L(xi, ẋi, t)

]
+ p0ṫ = 0,

H(xi, pi, t) = H(xi, pi, t)− q(t) = 0.
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Thus, the extended Hamiltonian vector field is given by

XH =
∑
µ

(
∂H
∂pµ

∂

∂xµ
− ∂H
∂xµ

∂

∂pµ

)
=

∑
i

(
∂H
∂pi

∂

∂xi
− ∂H
∂xi

∂

∂pi

)
+
∂H
∂H

∂

∂t
− ∂H

∂t

∂

∂H

Here, we apply some rules:

∂H
∂xi

=
∂H

∂xi
,

∂H
∂pi

=
∂H

∂pi
,

∂H
∂H

= 1,
∂H
∂t

= 0,

∴ XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi
+
∂

∂t
. (2.2.2.5)

Thus, XH is the time-dependent Hamiltonian vector field. The vector field XH lies in the
kernel of dθH, so the bicharacteristic of θH is a path through the extended phase space such
that the tangent vector to the path at any point is parallel to XH.

It is clear that the Poincaré-Cartan two form associated to (2.2.2.2)

ω = dθH =
∑
i

dpi ∧ dxi − dH ∧ dt (2.2.2.6)

is invariant under Jacobi-Maupertuis transformation. This reveals that the JM transfor-
mation is the time-dependent canonical transformation. Now consider the time-dependent
canonical transformations of the extended phase space,

t→ σ dσ = Λ(x, p)dt,

H → H̃ H̃ = Λ−1(x, p)H.
(2.2.2.7)

where Λ(x, p) = (E − U(x)). This changes the initial equations of motion

dxi

dσ
= Λ−1(x, p)

(
dxi

dt
− H̃ ∂Λ

∂pi

)
,

dpi
dσ

= Λ−1(x, p)

(
dpi
dt

+ H̃
∂Λ

∂xi

)
.

This preserves the canonical form of the Hamilton-Jacobi equation given by

∂S

∂σ
+ H̃ =

∂S

∂t

dt

dσ
+ Λ−1H = Λ−1

(
∂S

∂t
+H

)
= 0.

In other words, S satisfies

S =

∫
(pidx

i −Hdt) =

∫
(pidx

i − H̃dσ).

Integral trajectories have two parametric forms XH and XH̃ corresponding to the Hamiltoni-

ans H and H̃ = Λ−1(x, p)H respectively. The transformation XH → XH̃ is the Maupertuis
transformation. If σ be the time along trajectories of the vector XH̃ , then the Maupertuis
transformation gives the Jacobi transformation dσ = (E − U(x))dt.

Thus, the reparametrization can be seen as part of the canonical transformation [32, 33]
to counter the changes in the form of the equation of motion. This maps the geodesic onto
another geodesic while preserving integrability.
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Naturally, for a transformed Hamiltonian, the dynamical description should also change
to match the new generator of time translations. This essentially means that the geodesic
must be reparameterized to keep the form of Hamilton’s equations invariant. Further-
more, from the lifted Hamiltonian, using (2.2.1.5) and (2.2.1.7) gives the momentum and
reparametrization factor:

dxi

dσ
=
∂H̃

∂pi
= 2g̃ij(x)pj =

1

m (E − U(x))

(
gij(x)pj

)
=
dt

dσ
ẋi,

pi =
1

2
g̃ij(x)

dxj

dσ
, Λ(x, p) =

dσ

dt
=
∣∣E − U(x)

∣∣. (2.2.2.8)

Thus, according to (2.2.2.7), the new Hamiltonian can be said to be:

H =
H∣∣E − U(x)

∣∣ . (2.2.2.9)

Using (2.2.2.8) for the Jacobi Hamltonian, we can say that the reduced Lagrangian is

L̃ = g̃ij(x)
dxi

dσ

dxj

dσ
= 4g̃ij(x)

(
1

2
g̃ik(x)

dxk

dσ

)(
1

2
g̃jl(x)

dxl

dσ

)
= 4g̃ij(x)pipj = 4H̃ = 4

∴ L̃ = (E − U(x))L = g̃ij(x)
dxi

dσ

dxj

dσ
= 4 (2.2.2.10)

Liouville integrability of an n-dimensional geodesic flow is defined to imply that:

a. n functionally independent first-integrals of motion In exist almost everywhere.

b. Such integrals are in involution: {Ij, Ik} = 0 for all 1 < j, k < n.

Restricting the geodesic flow onto any non-zero fixed energy level surfaces are smoothly
equivalent to the trajectory. Consequently, we may redefine the condition of integrability
to imply the existence of n− 1 functionally independent first integrals in involution almost
everywhere on the unit covector bundle {H̃(x, p) = g̃ij(x)pipj = 1} ⊂ T ∗Mn [34].

2.2.3 Conserved quantities and Clairaut’s constant

Starting with the Hamiltonian in (2.2.1.7), we shall write the dynamical equations with
respect to a new parameter s as shown in [1, 16]

dxi

ds
=
∂H̃

∂pi
=

gij(x)

2m (E − U(x))
pj,

dpi
ds

= −∂H̃
∂xi

= − 1

2m (E − U(x))

[
1

2

∂gij(x)

∂xi
pipj +

∂U

∂xi

]
.

(2.2.3.1)

Upon comparison with (2.2.1.5), we can see that the dynamical equations are unaltered,
except for a reparametrization as in [1, 16], given by:

ds

dt
= 2m (E − U(x)) . (2.2.3.2)
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Consequently, for any conserved quantity K = K(2)ijpipj +K(0), we can say:

dK

ds
=
{
K, H̃

}
=
dt

ds

dK

dt
=

1

2m [E − U(x)]
{K,H} . (2.2.3.3)

∴
{
K, H̃

}
= 0 ⇒ {K,H} = 0. (2.2.3.4)

In [31], T. Houri describes K̃ = K(2)ijpipj +K(0)H̃ where according to (2.2.1.7), we can say

K̃ = K(2)ijpipj +K(0)H̃ = K(2)ijpipj +K(0) = K, ∵ H̃ = 1, (2.2.3.5)

thus, showing that the conserved quantities remain the same for the Jacobi metric. This is not
surprising given that the Jacobi-Eisenhart lift was just a reparametrization that left position
and momenta unaltered. Since all conserved quantities or first integrals in Hamiltonian
mechanics are polynomials of position and momenta, they should also be unchanged under
such a transformation, unless a canonical transformation is involved.

Taking angular momentum for example, if the spatial metric exhibits spherical symmetry,
as described below:

gij(x)dxidxj = W 2(x)dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (2.2.3.6)

Then using (2.2.3.2), we will have the conserved angular momentum for θ = π
2

in the form
known as Clairaut’s constant given by:

R = 2mr2
(
E − U(x)

)dϕ
ds

= mr2dϕ

dτ
= const. (2.2.3.7)

showing that the angular momentum R in (2.2.3.7), as a first integral is invariant under such
formulation as shown in (2.2.3.5).

2.3 Formulation from a metric line element

One of the authors formulated the Jacobi metric from the line element in [17] and demon-
strated the formulation for the Schwarzschild metric. Here, we will show how the line element
formulation equates to that given by (2.2.1.8) which describes the non-relativistic formula-
tion.

It is worth noting that in [17], the Jacobi metric was formulated only for static metrics and
stationary metrics of the Zermelo form. Here we formulate the Jacobi metric for stationary
metrics of the Randers form of Finsler metric. Stationary metrics (with vector potential terms
Ai 6= 0) are distinct from static metrics in the sense that while both are time-translation
invariant, only static metrics are time-reversal invariant. If Ai = 0 stationary metrics reduce
to static metrics.

Let us consider the following metric:

dl2 = −c2V 2(x)
(
dt+ Ai(x)dxi

)2
+ gij(x)dxidxj. (2.3.1)

and the corresponding Lagrangian is given as:

L(x, ẋ) = m

√
c2V 2(x)

(
ṫ+ Ai(x)ẋi

)2 − gij(x)ẋiẋj. (2.3.2)
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The momentum conjugate to co-ordinates are given by:

H

c
=
∂L

∂ṫ
=

mc2V 2(x)
(
ṫ+ Ak(x)ẋk

)√
c2V 2(x)

(
ṫ+ Ak(x)ẋk

)2 − gij(x)ẋiẋj
=
E
c
,

pi
c

=
∂L

∂ẋi
=
m
{
c2V 2(x)Ai(x)

(
ṫ+ Ak(x)ẋk

)
− gij(x)ẋj

}√
c2V 2(x)

(
ṫ+ Ak(x)ẋk

)2 − gij(x)ẋiẋj
.

(2.3.3)

With the following calculations using (2.3.3), we will have(
E
c

)2

−m2c2V 2(x) = m2c2V 2(x)

[
c2V 2(x)

(
ṫ+ Ak(x)ẋk

)2

c2V 2(x)
(
ṫ+ Ak(x)ẋk

)2 − gij(x)ẋiẋj
− 1

]
,

=
m2c2V 2(x)gij(x)ẋiẋj

c2V 2(x)
(
ṫ+ Ak(x)ẋk

)2 − gij(x)ẋiẋj
.

From (2.3.3), we can see that the gauge-covariant momenta are given by:

Πi

c
=
pi
c
−

mc2V 2(x)Ai(x)
(
ṫ+ Ajẋ

j
)√

c2V 2(x)
(
ṫ+ Ak(x)ẋk

)2 − gij(x)ẋiẋj
=

−mgij(x)ẋj√
c2V 2(x)

(
ṫ+ Ak(x)ẋk

)2 − gij(x)ẋiẋj
,

E2 −m2c4V 2(x) = c2V 2(x)gij(x)ΠiΠj ⇒ c2V 2(x)gij(x)

E2 −m2c2V 2(x)
ΠiΠj = 1. (2.3.4)

One can easily see that in the flat space setting V 2(x) = 1 in (2.3.4), we have the familiar
relativistic energy equation

E2 =
∣∣Π∣∣2c2 +m2c4.

Thus from the inverse metric (2.3.4) we have the Jacobi metric given by:

J ij(x) =
c2V 2(x)gij(x)

E2 −m2c4V 2(x)
⇒ Jij(x) =

E2 −m2c4V 2(x)

c2V 2(x)
gij(x). (2.3.5)

Thus, for a fixed relativistic energy E , all timelike geodesics are geodesics of the above Jacobi
metric. Now that we have summarized the formulation of the Jacobi metric for time-like
geodesics, we shall see how it evolves under the non-relativistic approximation. Suppose that
we write the temporal metric component as

V 2(x) = 1 +
2U(x)

mc2
. (2.3.6)

and set the non-relativistic approximation rules

2U(x) << mc2 gij(x)ΠiΠj << m2c2. (2.3.7)

From 2.3.4, we can see that on applying (2.3.6) and (2.3.7), we get

E = mc2

√
1 +

2U(x)

mc2

√
1 +

gij(x)ΠiΠj

m2c2

≈
(

1 +
U(x)

mc2
+ ...

)(
mc2 +

1

2

gij(x)ΠiΠj

m
+ ...

)
= mc2 +

1

2

gij(x)ΠiΠj

m
+ U(x) + ....,
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∴ E ≈ mc2 +
1

2

gij(x)ΠiΠj

m
+ U(x) = mc2 + T + U(x).

which assures us that our approximation is on the right track. We shall now rewrite the
energy in the following form:

E ≈ mc2 + E E = T + U(x) << mc2,(
E
mc2

)2

=

(
1 +

E

mc2

)2

≈ 1 +
2E

mc2
.

(2.3.8)

We will now see that the Jacobi metric as demonstrated in (2.3.5) under the approximations
of (2.3.7) and (2.3.8) becomes

Jij(x) =
E2 −m2c4V 2(x)

c2V 2(x)
gij(x) =

(
E
mc2

)2

− V 2(x)(
V (x)

mc

)2 gij(x) ≈

(
1 +

2E

mc2

)
−
(

1 +
2U(x)

mc2

)
1

(mc)2

(
1 +

2U(x)

mc2

) gij(x)

=
2m (E − U(x))(

1 +
2U(x)

mc2

) gij(x) ≈ 2m (E − U(x)) gij(x),

∴ Jij(x) = 2m (E − U(x)) gij(x) . (2.3.9)

Thus, the Jacobi metric in the non-relativistic approximations agrees with the result (2.2.1.8),
showing that both formulations of a projection of the geodesic onto the constant energy
hypersurface are consistent and correct.

2.4 Jacobi metric for time-like geodesics in stationary

space-time

Now that we have summarized the formulation of the Jacobi metric for time-like geodesics,
we shall first demonstrate Gibbons’ application for the formulation on the Schwarzschild
metric [17], Then we shall proceed to apply the present formulation of the Jacobi-metric by
the to other static and stationary space-time metrics such as Taub-NUT, Bertrand and Kerr
metrics.

2.4.1 Schwarzschild metric

For the Schwarzschild metric (setting c = 1) we are dealing with the case where Ai(x) = 0
given by:

dl2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (2.4.1.1)

We can say that

V 2(x) =

(
1− 2M

r

)
gijdx

idxj =

(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)
. (2.4.1.2)
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Thus, the relativstic Schwarzschild Jacobi metric according to (2.3.5) is given by

Jij(x)dxidxj =

[
E2 −m2

(
1− 2M

r

)][(
1− 2M

r

)−2

dr2 +

(
1− 2M

r

)−1

r2
(
dθ2 + sin2 θ dϕ2

)]
.

g̃ij(x)dxidxj = 2m

[
E +

mM

r

][(
1− 2M

r

)−1

dr2 + r2
(
dθ2 + sin2 θ dϕ2

)]
, (2.4.1.4)

Thus, concuding Gibbons’ example of application of the formulation to a static metric [17].
Now we shall formulate the Jacobi metric for other geodesics in stationary space-times.

2.4.2 The Taub-NUT metric

In 1951, Abraham Huskel Taub found an exact solution of Einstein’s equations, which was
subsequently extended to a larger manifold by E. Newman, T. Unti and L. Tamburino in
1963, known as the the Taub-NUT [35]. It is a gravitational anti-instanton with correspond-
ing SU(2) gauge fields, with geodesics which approximately describe the motion of well
separated monopole-monopole interactions. As a dynamical system it exhibits spherically
symmetry, with geodesics admitting Kepler-type symmetry.

The Euclidean Taub-NUT metric is given by:

dl2 = 4M2 r −M
r +M

(dψ + cos θ dϕ)2 +
r +M

r −M
dr2 +

(
r2 −M2

) (
dθ2 + sin2 θ dϕ2

)
. (2.4.2.1)

where ψ ≡ t. However, it is not a space-time due to the Euclidean signature, which results
in a slightly different form of Jacobi metric derived by the same approach. Furthermore,
the nature of its potential term distinguishes it from other space-times, such that the lower
energy and weak potential limits (for other space-times we shall see that V 2(x)M=0 = 1)
need to be differently defined. Here, we can see that

V 2(x) = 4M2 r −M
r +M

V 2(x)M=0 = 0,

gijdx
idxj =

r +M

r −M
dr2 +

(
r2 −M2

) (
dθ2 + sin2 θ dϕ2

)
.

(2.4.2.2)

Thus, the geometric line-element based Jacobi metric derived in the same manner as (2.3.5)
is given by

Jij(x)dxidxj =
(r +M)2

4M2

(
4m2M2 r −M

r +M
−Q2

)[
dr2

(r −M)2 +
(
dθ2 + sin2 θ dϕ2

)]
.

(2.4.2.3)

where Q = m
∂

∂ψ̇

√(
dl

dτ

)2

. On the other hand, the Lagrangian based Jacobi metric derived

in the same manner as (2.2.1.8) (according to (2.2.3), E =
∑

µ pµẋ
µ−Lgeod = 0) is given by

g̃ij(x)dxidxj = −Q2 (r +M)2

4M2

[
dr2

(r −M)2 +
(
dθ2 + sin2 θ dϕ2

)]
. (2.4.2.4)
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   (2.4.1.3)
and the non-relativistic Schwarzschild Jacobi metric according to (2.2.1.8) is given by



which describes the weak potential limit V 2(x) ≈ 0, where Q =
m

2

∂

∂ψ̇

[(
dl

dτ

)2
]

is a con-

served quantity. Now we shall turn our attention to another case: the Bertrand space-time
metric.

2.4.3 The Bertrand space-time metric

According to Bertrand’s theorem, all bounded, closed and periodic orbits in Euclidean space
are associated only with two potentials: the Kepler-Coloumb U(r) = a

r
+ b and the Hooke-

Oscillator U(r) = ar2 + b, which are dual to each other, related via the Bohlin-Arnold-
Vasiliev transformation [36, 37]. The Taub-NUT metric previously discussed is effectively
a Euclidean Bertrand space-time metric with magnetic fields applied and exhibits the same
duality as shown in [37]. Perlick showed that Bertrand’s theorem arises in General Relativity
as well [38]. The Bertrand space-time metric is given as:

dl2 = − dt2

Γ(r)
+ h2(r)dr2 + r2

(
dθ2 + sin2 θ dϕ2

)
. (2.4.3.1)

Since angular momentum is conserved under spherical symmetry, taking θ = π
2

and defining
1

Γ(r)
= 1 + 2U(r)

m
, the natural Hamiltonian is given as:

H(x,p) =
p2
r

2h2(r)
+
p2
ϕ

2r2
+
m

2

(
1

Γ(r)
− 1

)
= E. (2.4.3.2)

Therefore, the Hamilton’s dynamical equations are:

ṙ =
∂H

∂pr
=

pr
h2(r)

ṗr = −∂H
∂r

=
p2
r

h2(r)

h′(r)

h(r)
+
p2
ϕ

r3
+
mΓ′(r)

2Γ2(r)
,

∴ ṗr =

(
2E +m− m

Γ(r)

)
h′(r)

h(r)
+

(
1

r
− h′(r)

h(r)

)
p2
ϕ

r2
+
mΓ′(r)

2Γ2(r)
.

(2.4.3.3)

The radial equation of motion is:

r̈ = −
(

2E +m− 1

Γ(r)

)
h′(r)

h3(r)
+

(
1

r
+
h′(r)

h(r)

)
p2
ϕ

h2(r)r2
+

mΓ′(r)

2h2(r)Γ2(r)
.

which for the Kepler problem U(r) = −k
r
, h2(r) = 1 is:

r̈ =
p2
ϕ

r3
− k

r2
.

By regular formulation, the Jacobi metric is given as:

g̃ij(x)dxidxj =

[
E +

m

2

(
1− 1

Γ(r)

)] [
h2(r)dr2 + r2

(
dθ2 + sin2 θ dϕ2

)]
. (2.4.3.4)

for which the reparameterized Hamilton’s equations according to (2.2.3.1) are:

dr

ds
=
dt

ds
ṙ =

2Γ(r)

(2E +m)Γ(r)−m
pr

h2(r)
. (2.4.3.5)

dpr
ds

=
dt

ds
ṗr =

2Γ(r)

(2E +m)Γ(r)−m

[(
2E +m− m

Γ(r)

)
h′(r)

h(r)
+

(
1

r
− h′(r)

h(r)

)
p2
ϕ

r2
+
mΓ′(r)

2Γ2(r)

]
.

(2.4.3.6)
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For example, if we consider the Kepler problem, we set U(r) = −k
r
, h2(r) = 1 and we have:

dr

ds
=
dt

ds
ṙ =

2r

2Er + k
pr. (2.4.3.7)

dpr
ds

=
dt

ds
ṗr =

2r

2Er + k

(
p2
ϕ

r3
− k

r2

)
. (2.4.3.8)

However, if we were to apply the treatment for time-like geodesics of [17] where c2V 2(r) =
1

Γ(r)
, then we would have the time-like Jacobi Bertrand metric as per (2.3.5) is

Jij(x)dxidxj =
(
E2Γ(r)−m2c2

) [
h2(r)dr2 + r2

(
dθ2 + sin2 θ dϕ2

)]
. (2.4.3.9)

The next metric we shall deal with is the Kerr metric.

2.4.4 The Kerr metric

In [39], the Jacobi metric of the Reissner-Nördstrom space-time was given. Here, we shall
turn our attention to another black-hole space-time known as the rotating (Kerr) black hole.
This is a stationary metric.

The Kerr metric (setting c = 1) is:

dl2 = −
(

1− 2GMr

ρ2

)
dt2 − 4GMar sin2 θ

ρ2
dφ dt

+
ρ2

∆
dr2 + ρ2 dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆ sin2 θ
]
dφ2,

∆(r) = r2 − 2GMr + a2 ρ2(r, θ) = r2 + a2 cos2 θ.

(2.4.4.1)

Here, the potential term V 2(x) and the the spatial metric gij(x) are taken to be

V 2(x) = 1− 2GMr

ρ2
. (2.4.4.2)

gij(x) =
ρ2

∆
dr2 + ρ2 dθ2 +

sin2 θ

ρ2

[(
r2 + a2

)2 − a2∆ sin2 θ
]
dφ2. (2.4.4.3)

So, using the potential (2.4.4.2) and the relativistic Jacobi metric formulation 2.3.5 gives us

Jij(x)dxidxj =

(
E2ρ2

ρ2 − 2GMr
−m2

)[
ρ2

∆
dr2 + ρ2 dθ2 +

sin2 θ

ρ2

{(
r2 + a2

)2 − a2∆ sin2 θ
}
dφ2

]
.

(2.4.4.4)
while the non-relativistic Jacobi metric formulation 2.2.1.8 gives us

g̃ij(x)dxidxj =

(
E +

2GMr

ρ2

)[
ρ2

∆
dr2 + ρ2 dθ2 +

sin2 θ

ρ2

{(
r2 + a2

)2 − a2∆ sin2 θ
}
dφ2

]
.

(2.4.4.5)
Now we shall consider how to execute such a formulation for time-dependent systems.
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2.5 Jacobi metric for time-dependent systems

Time dependent systems are essentially those where we find that the system energy is not
conserved. Usually such systems are dissipative in nature. When we formulate the Ja-
cobi metric for autonomous or time-independent systems, we are essentially projecting the
geodesic to a constant energy hypersurface. However, a non-autonomous or time-dependent
system does not possess a fixed energy hypersurface, requiring us to improvise our approach.
One way to deal with time-dependent systems is the Eisenhart-Duval lift.

The Eisenhart-Duval lift, developed by L.P. Eisenhart [28] and rediscovered by C. Du-
val [29], with applications demonstrated in [40, 41] embeds non-relativistic theories into
Lorentzian geometry. It is one example of a method for geometrizing interactions, where
a classical system in n dimensions is shown to be dynamically equal to a Lorentzian n + 2
space-time. It provides a relativistic framework to study nonrelativistic physics, simplify-
ing the study of symmetries of a Hamiltonian system by looking at geodesic Hamiltonians.
The hidden symmetries of this lift were studied from the perspective of the Dirac equation
by Cariglia [42], and it was applied to study the projective and conformal symmetries and
quantisation of dissipative systems such as Caldirola and Kannais damped simple harmonic
oscillator in [43].

Let (M, g) be a pseudo-Riemannian manifold, ie. g is a non-degenerate symmetric two times
covariant tensor field on M . Given a local chart (U, x1, ....xn) on M , the local expression for
g is is given by:

g = gij(x)dxi ⊗ dxj.

and the corresponding metric is

dl2 = gij(x)dxidxj. (2.5.1)

The geodesic of the equation is
ẍi + Γijkẋ

jẋk = 0.

where the connection

Γijk =
1

2
gil(x)

(
∂glj
∂xk

+
∂glk
∂xj
− ∂gjk

∂xl

)
.

can be obtained from the Euler-Lagrange equation from the Lagrangian L for a free particle,
ie.

L = Tg =
1

2
gij(x)ẋiẋj. (2.5.2)

We define Lagrangians of the mechanical type for systems with configuration space M ,
L ∈ C∞(TM), by choosing a pseudo-Riemannian structure g on M and a potential function
V ∈ C∞(TM) as follows

L(x, ẋ) =
1

2
gx(ẋ, ẋ)− V (x) =

1

2
gij(x)ẋiẋj − V (x).

The key concept of the Eisenhart lift is to introduce a new degree of freedom with a new
co-ordinate, thus replacing configuration space M with R×M . Eisenhart demonstrated the
possibility of relating the dynamical trajectories of a Lagrangian mechanical system with a
projection on M of extremal length curves on an extended manifold M̃ = R ×M with the
Riemannian structure

g̃ = Π∗2g −
1

2V
dz ⊗ dz.
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where
Π1,2 : R×M −→ R,M.

If we assume g00 as a function A of the co-ordinates (x1, ...xn), the square of arc length
geometry

ds2 = gij(x)dxidxj + A(x)dz2.

with the associated motion geometry

Tg =
1

2

(
gij(x)ẋiẋj + A(x)ż2

)
. (2.5.3)

then the equations of motion in terms of arc-length s is given by

xi
′′

+ Γijkx
j ′xk

′ − gij ∂A
∂xj

(z′)2 = 0.

Since z is a cyclical variable, we should have

A(x)ż = c ∈ R.

For each value of the parameter c, we can use a new parameter t = cs. Then the differential
equations reduce to

ẍi + Γijkẋ
jẋk − gij 1

2A2

∂A

∂xj
= 0 A(x)ż = 1.

Note that when c = 1, the parameter t coincides with s, and the condition A(x)ż = 1
corresponds to pz = 1. If we choose A = (2V )−1, then we obtain

ẍi + Γijkẋ
jẋk + gij

∂V

∂xj
= 0. (2.5.4)

Thus, g̃ is associated with kinetic energy (2.5.3) after Legendre transform leads to the new
Hamiltonian.

H =
1

2

(
gijpipj + V p2

z

)
. (2.5.5)

which coincides with the natural Hamiltonian of mechanical type for pz =
√

2. One way to
understand how it makes a difference is shown in the following subsections.

2.5.1 The Metric without Eisenhart Lift

We shall first look at the look at the system portrayed originally without the Eisenhart lift.
If the given general metric without Eisenhart lift is:

dl2 = hij(x, t)dx
idxj + 2

Ai(x, t)

m
cdxidt− 2

Φ(x, t)

m
c2dt2.

then the Lagrangian is given by

L =
m

2
hij(x, t)ẋ

iẋj + Ai(x, t)cẋ
iṫ− Φ(x, t) c2ṫ2.

We will have the momenta

pi =
∂L

∂ẋi
= mhij(x, t)ẋ

j + Ai(x, t)cṫ pt =
∂L

∂ṫ
= Ai(x, t)cẋ

i − 2Φ(x, t)c2ṫ = −H.
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The Maupertuis form of the action gives the Lagrangian along the geodesic (2.2.2.4). Thus,
we will have at least one conserved quantity which is the overall Legendre Hamiltonian:

dLgeod
dτ

=
∂Lgeod
∂xµ

ẋµ +
∂Lgeod
∂ẋµ

ẍµ =

[
∂Lgeod
∂xµ

− d

dτ

(
∂Lgeod
∂ẋµ

)]
︸ ︷︷ ︸

0

ẋµ +
d

dτ

(
∂Lgeod
∂ẋµ

ẋµ
)
,

⇒ d

dτ

(
∂Lgeod
∂ẋµ

ẋµ − Lgeod
)

= 0 ⇒ H =
∂Lgeod
∂ẋµ

ẋµ − Lgeod = 0 = conserved.

Now, depending on the metric’s dependence on time, we will face different situations.

Time-Independent Case

When independent of time t, we will have another conserved quantity H in addition to H

−H =
∂L

∂ṫ
= conserved.

From (2.2.2.4), we can see that this conserved quantity under time parametrization (ṫ = 1)
is given by

H = piẋ
i − Lgeod =

1

2m
hij(x)(pi − cAi)(pj − cAj) + Φ(x).

Thus, we have 2 conserved quantities: H and H.

Time-Dependent Case

If the metric is time-dependent, H will not be a conserved quantity. This means that we are
forced to resort to H as the only conserved quantity.

2.5.2 The Metric with Eisenhart Lift

This time, we will modify the metric with the Eisenhart lift by introducing a dummy variable
σ. If the given general metric with Eisenhart lift is:

dl2 = hij(x, t)dx
idxj + 2c dt dσ + 2

Ai(x, t)

m
dxidt− 2Φ(x, t)

m
c2dt2.

where the metric is independent of σ, then the Lagrangian is given by

L =
m

2
hij(x, t)ẋ

iẋj +mcṫσ̇ + Ai(x, t)cẋ
iṫ− Φ(x, t) c2ṫ2. (2.5.2.1)

We will have the momenta, where one is a conserved quantity

pi =
∂L

∂ẋi
pt =

∂L

∂ṫ
= mcσ̇ + Ai(x, t)cẋ

i − 2Φ(x, t)c2ṫ pσ =
∂L

∂σ̇
= mcṫ = conserved.

The Maupertuis form of the action gives the Lagrangian along the geodesic as:

Lgeod = pµẋ
µ =

∂Lgeod
∂ẋµ

ẋµ = piẋ
i + ptṫ+ pσσ̇ = piẋ

i + pσσ̇ +
ptpσ
mc

. (2.5.2.2)

As before, we will have the overall Legendre Hamiltonian H as a conserved quantity. Now
we look at the cases of the metric’s dependence on time.
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Time-Independent Case

When independent of time t, as before we have another conserved quantity pt. From (2.5.2.2),
we can see that this conserved quantity is given by

−pσpt
mc

= piẋ
i + pσσ̇ − Lgeod =

1

2m
hij(x)

(
pi −

pσ
m
Ai

)(
pj −

pσ
m
Aj

)
+ Φ(x)

(pσ
m

)2

= H.

Thus, we have 3 conserved quantities: H, H and pσ.

Time-Dependent Case

If the metric is time-dependent, H will not be a conserved quantity. This means that

H =
(
piẋ

i + pσσ̇ − Lgeod
)

+ ptṫ = H + ptṫ = H +
ptpσ
mc

= 0,

∴ pσ = −mcH
pt

= conserved, (2.5.2.3)

showing that we have 2 conserved quantities: H and pσ.

Thus, we can say that the Eisenhart-Duval lift is a useful tool for dealing with time-dependent
systems by giving another conserved quantity pσ to replace the natural Hamiltonian H
normally used to parameterize motion on the cotangent space.

2.5.3 Formulation

In this section, we will demonstrate the deduction of the Jacobi-metric for time-dependent
systems. The formulation has been deduced only with the metric line element.

Consider the following space-time metric:

dl2 = c2V 2(x, t)dt2 + 2c dσ dt− gij(x, t)dxidxj. (2.5.3.1)

Its corresponding line-element Lagrangian is given as:

L(x, ẋ, t) = m
√
c2V 2(x, t)ṫ2 + 2cσ̇ṫ− gij(x, t)ẋiẋj. (2.5.3.2)

and the momentum conjugate to co-ordinates are given by:

pt
c

=
∂L

∂ṫ
=

m
[
c2V 2(x, t)ṫ+ cσ̇

]√
c2V 2(x, t)ṫ2 + 2cσ̇ṫ− gij(x, t)ẋiẋj

,

pi
c

=
∂L

∂ẋi
=

−mgij(x, t)ẋj√
c2V 2(x, t)ṫ2 + 2cσ̇ṫ− gij(x, t)ẋiẋj

,

pσ
c

=
∂L

∂σ̇
=

mcṫ√
c2V 2(x, t)ṫ2 + 2cσ̇ṫ− gij(x, t)ẋiẋj

= q.

(2.5.3.3)

Using the equation for the Maupertuis form of the action

Lgeod = piẋ
i + ptṫ+ pσσ̇.
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we can deduce that for the line element, the relativistic energy equation is:

2cptpσ = c2gijpipj + c2V 2(x, t)p2
σ +m2c4 = Q2. (2.5.3.4)

With the following calculations we find that

gij(x, t)pipj =
m2c2gij(x, t)ẋ

iẋj

c2V 2(x, t)ṫ2 + 2cσ̇ṫ− gij(x, t)ẋiẋj
,

⇒ m2c2 + gij(x, t)pipj =
m2c2

(
c2V 2(x, t)ṫ2 + 2cσ̇ṫ

)
c2V 2(x, t)ṫ2 + 2cσ̇ṫ− gij(x, t)ẋiẋj

= 2qpt − q2c2V 2(x, t),

⇒ gij(x, t)

2qpt − q2c2V 2(x, t)−m2c2
pipj = 1.

this result can be written by writing V 2(x, t) = 2mU(x, t) as:

c2gij(x, t)

2 [c2qpt − q2c4U(x, t)]−m2c4
pipj = 1.

Thus the time-dependent Jacobi-metric is given by:

J ij(x, t) =
gij(x, t)

2 [qpt − q2U(x, t)]−m2c2
,

Jij(x, t) =
[
2
{
qpt − q2U(x, t)

}
−m2c2

]
gij(x, t).

(2.5.3.5)

which projects the geodesic onto the constant momentum hypersurface
pσ
c

= q. If we employ

the following approximation:

Q = mc2 + E(t) ⇒
(

Q

mc2

)2

≈ 1 +
2E(t)

mc2
(E << mc2),

∴ 2qpt ≈ m2c2 + 2mE(t). (2.5.3.6)

then the Jacobi metric under (2.5.3.6) will approximate to:

Jij(x, t) = 2m
[
E(t)− q2U(x, t)

]
gij(x, t). (2.5.3.7)

which is the non-relativistic approximation for time-dependent systems modified by an
Eisenhart-Duval lift. One may attempt to verify this by deducing the formulation start-
ing from the mechanical Lagrangian (2.5.2.1), or use a projective transformation as shown
in the next section.

2.6 Comparison to Projective Transformation

Projective geometry can be used to describe natural Hamiltonian systems and generate
the dualities between them. The Jacobi metric can be alternatively formulated from a
projective transformation in the phase space as described in [44]. This is described by the
null Hamiltonian, for which the curve is parameterized by the arc length.

H =
1

2m
gij(x)pipj + U(x)p2

u − sgn(H)p2
y. (2.6.1)
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Upon setting p2
u = 1 and p2

y = |E|, where E is the energy, we get null geodesics that project
down to the original system. Rescaling the Hamiltonian by the factor Ω2 = E − V (x), gives

H̃ =
H
Ω2

=
1

2m

gij(x)pipj
E − U(x)

− 1.

This is the null geodesic Hamiltonian related to the Jacobi metric for time-independent
systems. From it, the inverse metric, we can deduce the Jacobi metric (2.2.1.8).

g̃ij(x) =
1

2m

gij(x)

E − U(x)
g̃ij(x) = 2m [E − U(x)] gij(x). (2.6.2)

To account for time-dependence, as previously we modify the null Hamiltonian (2.6.1) via
an Eisenhart-Duval such that −sgn(H)p2

y −→
pupv
mc

to include the extra co-ordinate as a
dummy variable

H =
1

2m
gij(x, t)pipj + U(x, t)p2

u +
pupv
mc

. (2.6.3)

which is essentially an Eisenhart-Duval lifted Hamiltonian. As before, if we rescale (2.6.3) by
a factor Ω2 = −pupv−U(x, t)p2

u, then we will get the corresponding null geodesic Hamiltonian
for the Jacobi metric.

H̃ =
H
Ω2

= − 1

2m

gij(x, t)pipj
pupv + U(x, t)p2

u

− 1.

Here, if we write pu = q = mc, and pv = −E(t) in accordance with (2.5.2.3), we will have
the Jacobi metric for time-dependent systems

g̃ij(x, t) =
1

2m

gij(x, t)

E(t)− q2U(x, t)
g̃ij(x, t) = 2m

[
E(t)− q2U(x, t)

]
gij(x, t). (2.6.4)

Upon comparison (2.6.2) and (2.6.4) match (2.2.1.8) and (2.5.3.7) respectively. This shows
that the Jacobi metric in the non-relativistic limit can be deduced from projective trans-
formations of time-dependent systems, just as [44] demonstrates it for time-independent
systems.

2.7 Application to Kepler problem

We now consider the Kepler problem of orbital motion in the presence of a central potential
U(r) = −α

r
. Since this is a problem involving spherical symmetry, we have the spatial part

of the metric as the conformally flat polar metric. We shall only consider two dimensional
motion because of angular momentum conservation in a radial potential.

Thus, the Jacobi-Kepler metric is given as a conformally flat metric:

ds̃2 = (E − U(r))
(
dr2 + r2dθ2

)
= f 2(r)

(
dr2 + r2dθ2

)
(2.7.1)

Here, the Gaussian curvature KG is given by:

er = f(r) dr eθ = rf(r) dθ,

deθ = (rf(r))′ dr ∧ dθ ⇒ ωθr =
(rf(r))′

f(r)
dθ ⇒ dωθr =

(
(rf(r))′

f(r)

)′
dr ∧ dθ,
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∴ KG = Rθ
rθr = − 1

rf 2(r)

d

dr

(
1

f(r)

d

dr
(rf(r))

)
(2.7.2)

Thus, for f 2(r) = E − U(r), the Gaussian curvature (2.7.2) in this case is given as:

KG =
(rU ′(r))′ (E − U(r)) + r (U ′(r))2

2r (E − U(r))3 (2.7.3)

If h is a regular value of U(r) on the boundary ring, ie. U(r) = h;x ∈ ∂M we have by
continuity

(rU ′(r))
′
(E − U(r)) + r (U ′(r))

2
> 0, KG −→∞ (2.7.4)

In case of the Kepler problem, we have U(r) = −α
r

, so the Gaussian curve KG is:

KG = − αE

2 (rE + α)3 . (2.7.5)

Thus, we can see that the curvature is classified as:

∀ E > −α
r


E < 0 ⇒ KG > 0 ; ellipse

E = 0 ⇒ KG = 0 ; parabola

E > 0 ⇒ KG < 0 ; hyperbola

(2.7.6)

Thus, for the Kepler problem, for negative energies in the range −α
r
< E < 0, we will have

positive curvature, and thus closed periodic orbits described by the Jacobi-Kepler metric.
What motivates us to connect this theory with the Kepler problem is that it describes H̃ = 1
geodesic flow on T ∗S3, KG = 1 energy surface.

The Hamiltonian flow along a geodesic is given by the Hamiltonian vector field operator,
which for the Kepler equation, essentially becomes:

XH =
∂H

∂pi

∂

∂xi
− ∂H

∂xi
∂

∂pi
= pi

∂

∂xi
− αx

i

r3

∂

∂pi
(2.7.7)

Thus, under circumstances of constant curvature, the radial equation of motion is:

r̈ − p2
θ

r3
= −U ′(r) ⇒ r̈ = ṗr =

p2
θ

r3
− U ′(r). (2.7.8)

Thus, for constant vanishing Gaussian curvature, we will have the Kepler potential, and thus,
the Kepler equations of motion. However, if we consider the Jacobi metric and Hamiltonian,
we will have:

dr

dσ
=

1

E − U(r)
pr ⇒ pr =

rE + α

r

dr

dσ
,

dpr
dσ

=
dt

dσ
ṗr =

r

rE + α

(
p2
θ

r3
− α

r2

)
= − α

r2

(
dr

dσ

)2

+
rE + α

r

d2r

dσ2
,

∴
d2r

dσ2
= − Ep2

θ

(rE + α)3 −
α

(rE + α)2 (2.7.9)

If one wishes to verify, it can be confirmed in (2.7.9) that:

Γ̃rjk
dxj

dσ

dxk

dσ
=

Ep2
θ

(rE + α)3 +
α

(rE + α)2 (2.7.10)

showing that the RHS of (2.7.9) matches that of (2.2.1.11), and our analysis is consistent.
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2.7.1 Bohlin transformation and duality

The Bohlin transformation is a canonically converts the dynamics of the oscillator system
into that of the Kepler system and vice versa. We shall see how the Jacobi metric for a fixed
energy following a canonical transformation demonstrates this as shown in [16].

The transformation rule involves expressing the co-ordinates as a complex variable:

r = q1 + iq2 (2.7.1.1)

The canonical transformation we shall use as shown in [30] is:

r −→ z =
r2

2
=

(
q2

1 − q2
2

2

)
+ i (q1q2) = x+ iy

x =
q2

1 − q2
2

2
y = q1q2

(2.7.1.2)

x2 + y2 =
(q2

1 + q2
2)

2

4
, or 2

√
x2 + y2 = q2

1 + q2
2. (2.7.1.3)

For the covariant momentum, in accordance with Bohlin’s transformation rule:

p1 =
∂x

∂q1

px +
∂y

∂q1

py = q1px + q2py, p2 =
∂x

∂q2

px +
∂y

∂q2

py = −q2px + q1py,

p = p1 + ip2 = (q1 − iq2) (px + ipy) (2.7.1.4)

This transformation can also be written in matrix form as:(
px
py

)
=

1

q2
1 + q2

2

(
q1 −q2

q2 q1

)(
p1

p2

)
(2.7.1.5)

Thus we obtain

p2
1 + p2

2

q2
1 + q2

2

= p2
x + p2

y. (2.7.1.6)

LetH(p, q) be any Hamiltonian and fix the energyE. Let us consider flow by the reparametriza-
tion dt

dτ
= f(q, p) This immediately yields

H̃(p, q) = f(p, q)(H(p, q)− E),

which retains the zero energy surface on the level set of H to the energy E

H−1(E) = {(p, q)|H(p, q) = E}.

If the oscillator Hamiltonian is given as

Hosc(qi, pi) =
1

2

(
p2

1 + p2
2

)
+
a

2

(
q2

1 + q2
2

)
− b (2.7.1.7)

The transformation (3.14) maps the Hamiltonian of the oscillator equation to that of Kepler,

Hkepler(x, p) = p2
x + p2

y −
b

2
√
x2 + y2

+ a, (2.7.1.8)
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thus (3.14) can be considered to be the Bohlin transformed co-ordinates and for the time
being we assume r =

√
x2 + y2 6= 0. This clearly yields the transformation of the oscillator

Hamiltonian into the Kepler Hamiltonian.

If a and b are treated as new momenta then the null lift of the (2.7.1.8), given by

H̃(x, p) = p2
x + p2

y −
pz2√
x2 + y2

+ p2
a, (2.7.1.9)

where we have added two new conjugate variables (z, pz), (a, pa) and corresponding momenta
being conserved. Recently, Cariglia [45] made a fine observation to connect all the energy
(positive, null and negative) regimes of Kepler orbit by introducing an additional conjugate
pair. This one can be done if we replace (a, pa) pair by two additional conjugate pair (α, pα)

and (γ, pγ) and Hamiltonian H̃(x, p) is replaced by

H̃(x, p) = p2
x + p2

y −
pz2√
x2 + y2

− p2
α + p2

γ.

2.7.2 Contact method, reparametrization and regularization

A contact form α on a (2n + 1)-dimensional manifold M is a Pfaffian form satisfying α ∧
(dα)n 6= 0. The contact distribution is given by C|U = Ker α|U , where U is the open set in
M . Given a contact form α , the Reeb vector field Z is a vector field uniquely defined by

iZα = 1, iZdα = 0. (2.7.2.1)

Here we are interested in problem of closed Hamiltonian trajectories on a fixed energy H = E
surface, so we follow Weinstein’s method [46]. Let P 2n be the total space of the principle
R∗-bundle π : P →M , whose fibers are non-zero covectors (q, p) that vanish on the contact
element C(x) in M . The symplectization P has a canonical 1-form α, restriction of Liouville
1-form, and the symplectic form is given by ω = dα. Consider the multiplicative R∗ action on
(P, ω), from the nondegeneracy of ω, there exist a unique vector field Y , called the Liouville
vector field, which satisfies the following identities:

iY ω = α, α(Y ) = 0, LY ω = ω. (2.7.2.2)

Since the Reeb vector field Z is a section of Kerdα|M = 0, hence it is proportional to XH |M .
Z can be manifested as a flow of XH |M after a time reparametrization dt = f(q, p) dτ
introduced earlier. Thus we obtain

Z(x) =
dx

dτ
=
dx

dt

dt

dτ
= f(x)XH(x), x = (q, p).

Claim 2.7.1. The Reeb vector field Z is

Z =
XH

Y (H)
, where f(x) =

1

Y (H)
. (2.7.2.3)

Proof : By definition we know ω(Y, ·) = α and α(Z) = 1. Thus we obtain

1 = α(Z) = ω(Y, f(x)XH) = f(x)ω(Y,XH) = f(x)dH(Y ) = f(x)Y (H).

2 The function H0 = H−E/Y (H) is defined on M as an invariant surface. Then the vector
field XH0|M is equal to the Reeb vector field Z.
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Application to Kepler equation

Consider a special symplectic transformation (p, q)→ (−q, p)1. It is easy to check that this
transformation leaves the symplectic form:

ω = dα =
n∑
i=1

dpi ∧ dqi =
n∑
i=1

−dqi ∧ dpi =
n∑
i=1

d(−qidpi) = dα̃.

The associated Liouville vector field is Y =
∑n

i=1 q
i∂qi , which satisfies ω(Y, ·) = α̃. It is easy

to check that for Kepler Hamiltonian H = 1
2
|p|2 − β

|q|
,

Y (H) =
n∑
i=1

qi
∂H

∂qi
=

n∑
i=1

(qi)
2 β

|q|3
=

β

|q|
.

Thus, on isoenergetic surface we obtain

H − E
Y (H)

=
|q|
β

(
1

2
|p|2 − β

|q|
− E

)
= (|p|2 − 2E)

|q|
β
− 1 = H0.

Consider a smooth function

F = (H0 + 1)2/2 =
(|p|2 − 2E)2

8β2
|q|2. (2.7.2.4)

On the fixed energy surface H = E, F becomes F |ME
= 1

2
. The trajectories of the Hamil-

tonian flow of F on the isoenergetic surface are governed by the reparameterized time τ .
The Hamiltonian vector fields of F and H0 coincide on the level hypersurface F = 1/2 or
equivalently H0 = 0. One can easily check

XF =
|q|
β
pi
∂

∂qi
− qi
|q|2

∂

∂pi
=
|q|
β

(
pi
∂

∂qi
− βqi
|q|3

∂

∂pi

)

= pi
∂

∂qi
− βqi
|q|3

∂

∂pi
/
β

|q|
= XH/Y (H).

Thus we establish regularization theorem due to Moser.

Theorem 2.7.1. On the isoenergetic surface F = 1/2 the trajectories of the Hamiltonian

flow of the function F = (|p|2−2E)2

8β2 |q|2 traversed in time τ equal to trajectories of the Hamil-

tonian flow of the function H = 1
2
|p|2 − β

|q| traversed in real time t, and these two times are
connected by

dτ

dt
=

β

|q|
.

2.7.3 Houri’s canonical transformation

Another canonical transformation that can be applied to the Kepler problem, as performed
by Tsuyoshi Houri in [31], involves swapping the position and momentum phase-space co-
ordinates.

x̃i = pi, p̃i = xi. (2.7.3.1)

1This transformation appears in Moser’s work on regularization of Kepler orbit
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Thus, the Kepler Hamiltonian will transform as:

H =
1

2

(
p2

1 + p2
2 + p2

3

)
+
α

r
−→ 1

2

[(
x̃1
)2

+
(
x̃2
)2

+
(
x̃3
)2
]

+
α√

p̃2
1 + p̃2

2 + p̃2
3

. (2.7.3.2)

As a result, if we choose a fixed energy surface H = E we can further say:

H̃ =

(
E − r̃2

2

)2 (
p̃2

1 + p̃2
2 + p̃2

3

)
= α2, r̃2 =

(
x̃1
)2

+
(
x̃2
)2

+
(
x̃3
)2
. (2.7.3.3)

Thus, the related metric with constant curvature 4E on a fixed energy surface is:

g̃ij(x) =

(
E − r̃2

2

)2

δij, g̃ij(x) =

(
E − r̃2

2

)−2

δij. (2.7.3.4)

So the metric is given by

ds2 =

(
E − |x|

2

2

)−2

dx2. (2.7.3.5)

If we set the energy to be E = −k
2

, we obtain

ds2 = 4
(
k + |x|2

)−2
dx2. (2.7.3.6)

Let Mk be the space of constant curvature manifold. It is known that the Kepler phase space
is geodesically incomplete, since in the collision orbits, the particle arrives to the attractive
center with infinite velocity in a finite time, hence does not admit a transitive group of
motion. The mapping of the inversion

Ik : Mk/{0} → M̂k/{0},

and x→ x

|x|2
realizes isometry between its source metric g and the target metric ĝ. Suppose

(Ik)∗ : p 7→ p

|x|2
− 2

x

|x|4
〈x, p〉,

then one can easily check starting from (2.7.3.6) that

gq(x.x) = 4(k + |x|2)−2|p|2 7→ 4(
k +

1

|x|2

)2

|p|2

|x|4

=
4

(1 + k|x|2)2 〈I∗x, I∗x〉 = ĝI(q)(I∗x, I∗x),

describing another conformally flat metric. The question that arises here is; How to connect
with the Milnor construction?

If we set the energy to be E = −k
2

2
in (2.7.3.3), then we will have:

H̃ =
(k2 + r̃2)

2

4

(
p̃2

1 + p̃2
2 + p̃2

3

)
= α2. (2.7.3.7)
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If we choose the reparametrization as:

dt

dτ
=
r

k
, (2.7.3.8)

then we will have the new Hamiltonian as:

H =
r

k

(
H +

k2

2

)
=
r

k

(
|p|2

2
− α

r
+
k2

2

)
=

r

2k

(
|p|2 + k2

)
− α

k
,

H = kH + α =
r

2

(
|p|2 + k2

)
. (2.7.3.9)

However, Houri’s approach does not preserve the form of equations of the motion or geodesic
flow operator. That requires another step with Milnor’s construction [14].

2.7.4 Milnor’s construction

We shall now separately formulate the Kepler problem under Milnor’s construction [14],
which essentially involves a momentum inversion. From this formulation we shall write the
metric and the trajectory equation in terms of inverse momentum.

The Kepler equation implies:

dp

dt
= −α x

r3

∣∣∣∣dpdt
∣∣∣∣ =

α

r2
(2.7.4.1)

Levi-Civita showed that it is possible to simplify Kepler solutions by introducing a fictitious
parameter σ such that:

dσ

dt
=

1

r
(2.7.4.2)

This makes the reparameterized Kepler equation of motion:

dp

dσ
= −α x

r2
=

(
E −

∣∣p∣∣2
2

)
x

r
⇒

∣∣∣∣dpdσ
∣∣∣∣ =

α

r
=

∣∣p∣∣2
2
− E, (2.7.4.3)

∴ ds2 = 4
(

2E −
∣∣p∣∣2)−2 ∣∣dp∣∣2. (2.7.4.4)

Thus, there is one and only one metric on ME that satisfies our condition. Comparing
(2.7.4.4) result with the Houri’s formulation (2.7.3.5), we can see that they are identical,
except for a swap between momentum and co-ordinate. To describe events in the neighbour-
hood of infinity, we shall work with the inverted momentum co-ordinate.

w =
p∣∣p∣∣2 , ∣∣w∣∣2 =

1∣∣p∣∣2 , 2E
∣∣w∣∣2 < 1, (2.7.4.5)

∴ p =
w∣∣w∣∣2 ⇒ dp =

dw∣∣w∣∣2 − 2
(w.dw)w∣∣w∣∣4 ,

∣∣dp∣∣2 =

∣∣dw∣∣2∣∣w∣∣4 (2.7.4.6)

Using (2.7.4.3), (2.7.4.5) and (2.7.4.6) and defining ( )′ = d
dσ

, we will get:

p′ =

(
E −

∣∣p∣∣2
2

)
x

r
=

2E
∣∣w∣∣2 − 1

2
∣∣w∣∣2 x

r
,
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⇒ w′∣∣w∣∣2 − 2
(w.w′)w∣∣w∣∣4 =

2E
∣∣w∣∣2 − 1

2
∣∣w∣∣2 x

r
(2.7.4.7)

and

∣∣w′∣∣2∣∣w∣∣4 =

(
2E
∣∣w∣∣2 − 1

2
∣∣w∣∣2

)2

⇒ 4
∣∣w′∣∣2 =

(
2E
∣∣w∣∣2 − 1

)2

(2.7.4.8)

If we now substitute the fixed energy level E = −k
2

2
in (2.7.4.8), then we will have the metric

in terms of the inverse momentum given as:

ds2 = 4
(

1 + k2
∣∣w∣∣2)−2∣∣dw∣∣2 (2.7.4.9)

which is the inverse-momentum version of (2.7.4.4) and a constant mean-curvature metric.
From (2.7.4.7), we get the trajectory equation in terms of inverse momentum as:

x =

∣∣w∣∣2w′ − 2 (w.w′)w∣∣w∣∣2 (2E
∣∣w∣∣2 − 1

) r = 2α
2 (w.w′)w −

∣∣w∣∣2w′(
1− 2E

∣∣w∣∣2)2 (2.7.4.10)

Thus, x can be expressed as a smooth function of the parameter σ. If we use t in place of
σ, the function stops being smooth only at the point x = 0.

2.7.5 Geodesic flow

Now we will see if the form of geodesic flow is preserved after using momentum inversion
upon Houri’s canonical transformation. The Hamiltonian (2.7.3.7) describing geodesics on
such spaces under a momentum inversion for E = −k

2
[47] is given by

H̃ =
1

4

(
1 + k

∣∣x∣∣2)2 ∣∣p∣∣2. (2.7.5.1)

From this Hamiltonian, setting we can derive the Hamiltonian flow vector field

XH̃ =
∂H̃

∂pi

∂

∂xi
− ∂H̃

∂xi
∂

∂pi
= 2H̃

1
2

∣∣p∣∣ [ pi∣∣p∣∣3 ∂

∂xi
− kxi

∂

∂pi

]
.

Thus we finally obtain

∴
(

2H̃
1
2

∣∣p∣∣)−1

XH̃ =
pi∣∣p∣∣3 ∂

∂xi
− xi

∂

∂pi
. (2.7.5.2)

Comparing the flow operator above with the geodesic flow in (2.7.7), we obtain the quasi-
Hamiltonian vector field of Kepler equation in momentum space

Xmom
Kepler =

(
2k2H̃

1
2

∣∣p∣∣)−1

XH̃ . (2.7.5.3)

Thus, we can see that combining Houri’s transformation with Milnor’s momentum inversion
preserves the form of the geodesic flow, aside from a momentum factor. A vector field X

on a symplectic manifold (M,ω) is quasi-Hamiltonian if there exists a (nowhere-vanishing)
function Λ such that X is a Hamiltonian vector field ΛX ∈ XH(M), thus iΛXω = dH. This
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condition can alternatively be written as as iX(Λω) = dH, but the point is that the 2-form
Λω is not closed in the general case.

By applying the special canonical transformation that interchanges x and p, the Kepler
equation on momentum space transforms to the usual Kepler equation with the Hamiltonian

H =
1

4

(
k + |p|2

)2 |x|2.

Finally, we will explore the results of parameterizing the JM metric and Kepler equation
with the eccentric anomaly.

2.7.6 JM metric and Kepler equation parameterized by eccentric
anomaly

The Hamiltons equations of motion for the Kepler Hamiltonian under Houri’s canonical
transformation (2.7.3.3) are:

˙̃x
i

=
∂H̃

∂p̃i
= 2

[
E − 1

2

3∑
n=1

(x̃n)2

]2

p̃i,

˙̃pi =
∂H̃

∂x̃i
= 2

[
E − 1

2

3∑
n=1

(x̃n)2

](
3∑

n=1

p̃2
n

)
x̃i.

(2.7.6.1)

To proceed to equations of motion, we shall use (2.7.6.1) to write:

¨̃x
i

= −2

{
E − 1

2

3∑
n=1

(x̃n)2

}−1( 3∑
k=1

x̃k ˙̃x
k

)
˙̃x
i
+ 4

{
E − 1

2

3∑
n=1

(x̃n)2

}
H̃x̃i

= −2

(
x̃ · ˙̃x

)
· ˙̃x

Λ
+ 4ΛH̃x̃,

where Λ = (E − 1
2

∑3
n=1 (x̃n)2). Let us write x̃ as x, hence we obtain

ẍ = −2
(x · ẋ) · ẋ

Λ
+ 4ΛH̃x. (2.7.6.2)

It is known that the Laplace Lenz Runge vector

A(x, ẋ) =
1

µ

(
2H +

µ

|x|

)
x− 1

µ
(x · ẋ)ẋ (2.7.6.3)

is a conserved quantity for the Kepler flow, we can re-write this equation using A(x, ẋ).
Using the Laplace Lenz Runge vector we obtain

2µ

Λ

(
A(x, ẋ)− x

|x|

)
= −2

(x · ẋ) · ẋ
Λ

+ 4ΛH̃x,

where H = E = H̃Λ2. Thus equation (2.7.6.2) can be written as

ẍ+
2µ

Λ

x

|x|
=

2µA

Λ
. (2.7.6.4)

33



Kepler equation parameterizing the eccentric anomaly

An advantage of the eccentric anomaly is that it is well suited to describe Kepler motion in
position space. Therefore we derive the equation of motion w.r.t. this parameter.

Let us reparameterize the time as

dt =
|x|
ε
ds. (2.7.6.5)

Thus we obtain
dx

ds
=
dx

dt

dt

ds
= ẋ
|x|
ε
.

The second derivative yields

d2x

ds2
=

1

|x|2

(
x · dx

ds

)
dx

ds
+
|x|2

ε2
ẍ =

1

|x|2

(
x · dx

ds

)
dx

ds
− µ

ε2|x|
x,

where we have used the Kepler equation ẍ = −µ x

|x|3
, and the Laplace-Runge-Lenz vector

is given by:

A(x, ẋ) =
1

µ

(
2E +

µ

|x|

)
x− 1

µ
(x · ẋ) ẋ

= −ε
2

µ

[
1

|x|2

(
x · dx

ds

)
dx

ds
− µ

ε2
x

|x|
+ x

]
, ε2 = −2E.

Here we consider the case of negative energy, ie. bounded orbits. Therefore we obtain

d2x

ds2
+ x = − µ

ε2
A, (2.7.6.6)

which is the form of a perturbed oscillator. Let us start with the Hamiltonian

H̃ = α2 =

(
E − r̃2

2

)2
(

3∑
n=1

p̃2
n

)
=

1

4

(
ε2 + |x|2

)2 |p|2,

where we have used 2E = −ε2. Now define

G(x,p) = H̃1/2 =
1

2

(
ε2 + |x|2

)
|p|.

We now consider regularized Kepler Hamiltonian system. The system of the Hamiltonian
obtained from

G̃(x,p) =
1

2ε

(
ε2 + |x|2

)
|p| − µ

ε
, ε 6= 0, (2.7.6.7)

is given by

ṗ =
|p|
ε
x, ẋ = − 1

|p|2
(
G̃(x,p) +

µ

ε

)
.

By the first equation, x =
ε

|p|
ṗ, we obtain

p̈ =
1

|p|2
(p · ṗ)ṗ− 1

ε|p|

(
G̃(x,p) +

µ

ε

)
p.

Its restriction to the level set
[
(x,p)|G̃(x,p) = 0

]
is flow of the Kepler problem in the

momentum space parameterized by the eccentric anomaly.
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3.1 Introduction

An instanton or pseudo-particle is a concept in mathematical physics that describes solutions
to equations of motion of classical field theory on a Euclidean space-time. The first such
solutions discovered were found to be localized in space-time, hence, the name instanton or
pseudoparticle. Instantons are important in quantum field theory because:

(a) They are leading quantum corrections to classical motion equations in the path integral

(b) They are useful for studying tunneling behaviour in systems like the Yang-Mills theory

Gravity and supergravity, like Yang-Mills theory, are gauge theories, implying similar
roles for their respective instantons. Instantons (for a set of self-contained lectures look
for [48]) are non singular solutions of classical equations in 4-dimensional Euclidean space,
and a useful tool to study low-dimensional sigma models and supersymmetric QCD. Since
instantons are non-perturbative objects, they play an important role in defining the vacuum
structure of QCD. It was found by Belavin, Polyakov, Schwarz and Tyupkin [49], which is
why it is known as BPST instantons in literature. Their role is to:

1. provide stationary phase points in path integrals for amplitude to tunnel between
topologically distinct field configurations [50]
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2. possibly play a role in quark confinement [51, 52] (for more details see [53, 54, 55]) that
lead baryons to decay into leptons and asymptotic freedom of QCD

3. contribute to the anomalous divergence of the axial vector current [56]

Gravitational instantons are non singular complete positive definite metrics that satisfy
the classical vacuum Einstein equations or the Einstein equations with Λ [57].

Rµν −
1

2
gµνR + Λgµν =

8πG

c4
Tµν .

In Euclidean quantum gravity, they are stationary phase metrics in the path integrals
for the partition functions Z [50] of the thermal and volume canonical ensembles [57, 58].
In these cases the instanton action dominates the contribution to − logZ. This action is
related to the areas of the bolts and to the nut charges and potentials. Nuts and bolts exhibit
a symmetry analogous to duality invariance in electromagnetism. Bolts are analogous to
“electric” type mass monopoles and nuts to gravitational dyons with a real electric type mass-
monopole and an imaginary “magnetic” type mass-monopole. The appearance of magnetic
monopole induces Dirac string-like singularity into the metric which can be further removed
by appropriate identifications and changes in the topology of the four manifold. So Nuts
cannot occur in the classical regimes without some quantum fluctuations of the background
contrary to the appearance of bolts. This implies that the bolts have an intrinsic gravitational
entropy equal to one quarter the sum of their areas. This generalises the results obtained
for black holes and cosmological event horizons [58, 59, 60].

Gravitational instantons, like gauge instantons, have been historically studied to describe
the non-perturbative transitions in quantum gravity, and by analytic continuation producing
real-time gravitational backgrounds [50, 61, 62]. Dealing with (anti)-self-dual systems makes
the task of solving Einsteins equations substantially easier, producing first order equations
like the (anti)-self-dual Yang-Mills equations, often related to interesting integrable systems
[63]. Since the late 70s, many systems were developed from reductions of self-dual Yang-
Mills system, hinting that all integrable systems can be obtained from similar such reductions
[63, 64, 65], the generalized Darboux-Halphen system being one such system.

The chapter is organized as follows: we begin in section 3.2 with an exercise in the study
of the Euclidean Schwarzschild instanton, starting with a review of the standard results of the
bottom-up formulation of emergent gravity [66], and introduce the euclidean Schwarzschild
solution, with a wise choice for the Darboux coordinates in which we write the corresponding
metric. Then we obtain the set of symplectic U(1) gauge fields and derive the corresponding
vector fields and check the Jacobi identity for the Poisson and Lie algebra. Next we realize
the Seiberg Witten map between ordinary and NC gauge fields and find that the solution is
neither self-dual nor anti self-dual. In the next section, from the set of tetrads we obtain the
spin-connections and the curvature components and from that we get the Ricci tensor and
obtain Ricci flatness for the metric. Ricci flatness condition also translates into a vacuum
solution. In the penultimate section, we compute the bulk and boundary contribution to the
topological invariants namely Euler characteristics and the Hirzebruch signature complex.
Here we also obtain SU(2)± gauge fields for emergent Schwarzschild instanton and reconfirm
the fact that both the gauge fields make an equal contribution to the overall Euler invariant
or the signature. Thus emergent Scwarzschild solution can be seen as the sum of SU(2)L
instantons and SU(2)R anti-instantons, thus explaining the generic feature of stability for a
Ricci-flat manifold like the one we dealt with. We conclude with some comments and future
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directions. The appendices contain some details of the computations, namely some identities
from differential geometry that has been used, also the t’Hooft matrices and the full set of
SU(2)± gauge fields in matrix notation.

In section 3.3, the gDH system is introduced and a constrained system is derived from it.
Then the solutions of both the gDH and the constrained systems are discussed. We derive
following [67], the gDH system from a ninth-order dynamical system that is obtained as a
reduction of the SDYM field equations. We provide some details in our derivation that were
not included in earlier papers. Then we discuss the constrained system in the framework of
a fifth-order system that arise as a special case of the SDYM reduction. Then we formulate
a Lax pair and a Hamiltonian for the reduced system introduced.

In section 3.4, we will study the Bianchi-IX Euclidean metrics, starting by performing
a geometric analysis of the Bianchi-IX metric, directly exploring both connection-wise and
curvature-wise self-dual cases, bringing us to the Euler-Top and classical Darboux-Halphen
cases respectively, followed by computation of the general form of the curvature components.
A brief note will discuss how the classical case arises from the generalized one, and also
explore why we cannot always find a metric that gives rise to the generalized system. We
then proceed to derivations and discussions of the related Ricci flow equations related to the
system. We will then explore how the Chazy equation emerges from the classical Darboux-
Halphen system, a result of curvature-wise self-duality, as well how others like the Ramanujan
and Ramamani systems are related to it. This will be followed up by a detailed analysis of
integrability of the Bianchi-IX to see if self-duality implies integrability.

Finally, in section 3.5, we study the Taub-NUT, a special case of the Bianchi-IX as another
integrable system, the Bertrand space-time with magnetic field, starting with preliminaries
on mechanical systems with magnetic field interactions, then compute first-integrals similar
to the angular momentum and the Laplace-Runge-Lenz vector, in forms specifically for the
Taub-NUT. We deduce such first-integrals using equations of motion and analytically using
a momentum polynomial expansion. We then proceed to compare Taub-NUT metric to
Euclidean Bertrand space-time with magnetic monopoles and dipoles. Demonstrating such
a similarity allows the intensely studied Bertrand space-times to share many important
properties, and conversely extend properties of the Taub-NUT to Bertrand spaces with
magnetic fields. This helps us identify symmetries and conserved quantities of Taub NUT
and employ its curvature properties for Bertrand space-times. Afterwards, we study the
conserved quantity called the Fradkin tensor under Bohlin-Arnold-Vassiliev transformation
which are bound to have such Killing tensors embedded. Next, we derive the Taub-NUT
from a special case of self-dual Bianchi-IX metric described by the classical Darboux-Halphen
system. Then we geometrically analyze it, computing curvature and confirming its self-
duality as a gravitational instanton.

Rµνρσ = ±1

2
εµν

λγRλγρσ (3.1.1)

This analysis helps us explore the metric as an integrable system, and also to compute
topological invariants shared with comparable Bertrand space-times with magnetic fields.
After a short introduction to Killing Stäckel tensor and Yano tensors, we will focus on the
latter. After a brief overview of their properties, we will attempt to find them embedded
within conserved quantities. Then, we see if it exhibits a graded Lie-algebra structure that
decides if higher order Killing-Yano tensors can be constructed from it. Finally, we derive
hyperkähler structures of the Taub-NUT, and compare them to the Killing-Yano tensors to
see if they also exhibit quaternionic algebra.
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3.2 Schwarzschild instanton in Emergent Gravity

The Euclidean Schwarzschild solution is a canonical example of a gravitational instanton
exhibiting one parameter continuous symmetry group as opposed to two parameter contin-
uous symmetry group exhibited by almost all other known gravitational instantons. It is an
well known asymptotically flat (AF) gravitational instanton alongside the Euclidean Kerr
and flat space S × R3 which is a trivial examle representing the class [68]. Flat space E4

is also known to be the unique asymptotically Euclidean gravitational instanton. It was
an unproven conjecture that Euclidean Schwarzschild and Kerr are the only non-trivial AF
gravitational instantons besides flat space, due to some blackhole uniqueness theorems which
was later proven to be false by Chen and Teo [69].

It is worth paying attention to the fact that the thermal nature of black hole emission
can be related directly to the properties of Euclidean Schwarzschild solution ala Hawking.
In the Euclidean approach to quantum field theory one attempts to define quantities on
a “Euclidean subsection” and then obtain the physical space-time quantities by analytic
continuation. Particularly, the Feynman propagator for a field on space-time is obtained by
analytically continuing the Green’s function on Euclidean subsection. Thus one is naturally
led to study and examine the salient features of Euclidean Schwarzschild solution.

Mathematically the Euclidean Schwarzschild 4-manifold M is a complete solution to the
Euclidean Einstein’s equations with zero cosmological constant Λ, and has the non-trivial
topology M ∼= R2 × S2. In other words it is a Ricci flat manifold. It is not a self-dual
solution (e.g. the Taub-NUT metric or the Eguchi- Hanson metric) although classified as
an AF type gravitational instaton. We have a particularly nice form of the metric g on a
dense open subset (R2 \{O})×S2 ⊂M ∼= R2×S2 of the Euclidean Schwarzschild manifold.
It is convenient to use polar coordinates (r, τ) on R2 \ {O} in the range r ∈ (2m,∞) and
τ ∈ [0, 8πm), where m > 0 is a fixed constant related to the mass of the black hole.

The metric then takes the form on the open, dense coordinate chart U := (R2 \ {O})× (S2 \
({S} ∪ {N})) ⊂M ∼= R2 × S2:

ds2 =

(
1− 2m

r

)
dτ 2 +

(
1− 2m

r

)−1

dr2 + r2(dΘ2 + sin2 Θ dφ2),

where dΩ2 = dΘ2 + sin2 Θ dφ2 is the line element projection onto the unit sphere S2 in
spherical coordinates, Θ ∈ (0, π) and φ ∈ [0, 2π), and on the open coordinate chart (S2 \
({S} ∪ {N})) ⊂ S2. Despite the apparent singularity of the metric at the origin O ∈ R2, it
can be extended analytically to the whole R2 × S2 as demonstrated in Wald [70]. The U(1)
action defined by τ 7→ τ + 4mλ for eiλ ∈ U(1) leaves this metric invariant, and thus defines
the Killing vector field

X :=
1

4m

∂

∂τ
,

which (together with the U(1) action itself) clearly extends to a Killing field on the whole
Euclidean Schwarzschild manifold, which we will denote by X. Now consider the differential
1-form ξ := g(X, · ) dual to X. In our coordinate chart U it takes the form

ξ =
1

4m

(
1− 2m

r

)
dτ.
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General considerations about Killing’s equations on a Ricci flat manifold yield that dξ is a
harmonic 2-form, which on a complete manifold is equivalent to saying that it is closed and
co-closed and thus harmonic.

The correspondence between noncommutative (NC) U(1) gauge theory and gravity has
gained much attention in the context of emergent gravity [71, 72, 73, 74]. Current research
in the field of instantons [75, 76] reveals that gravitational instantons in Einstein gravity are
equivalent to U(1) instantons in NC gauge theory. In other words, self-dual electromagnetism
on NC space-time is equivalent to self-dual Einstein gravity [77]. This implies that gravity
can emerge from electromagnetism defined in NC space-time.

The relation between Yang-Mills instantons and gravitational instantons are further un-
derstood in [78] where it was shown that all gravitational insatantons are SU(2) Yang-Mills
instantons on a Ricci-flat 4- manifold but the reverse is not necessarily true. Gravitational
instantons satisfy the same self-dual equations of SU(2) Yang-Mills instantons. The gravi-
tational instanton which is a solution of (anti) self-dual gravity emerges either from SU(2)L
or SU(2)R Yang-Mills instanton sector, and the corresponding gauge fields constructed from
Yang-Mills instanton generate (anti) self-dual gravity. In [78] the result was further extended
to include general Einstein manifolds [79]: all Einstein manifolds with or without cosmolog-
ical constant are Yang-Mills instantons in O(4) = SU(2)L × SU(2)R gauge theory but the
reverse is not true. In fact they arise as a sum of instantons coming both from SU(2)L
instanton and SU(2)R anti-instanton. This may explain the stability of the four dimensional
Einstein manifold compared to the five dimensional Kaluza-Klein vacuum.

Here, we deal with a specific example of a Ricci flat Einstein manifold: the Euclidean
Schwarzschild black hole. It was discussed in [78] that the Euclidean solution outside of the
(anti)self-dual gravity is a combination of both SU(2)L and SU(2)R Yang-Mills instanton.
Following the bottom-up approach of Emergent Gravity [66], we construct vector fields from
the Euclidean Schwarzschild instanton and calculate the equations of motion and Jacobi
identity. Using the Seiberg-Witten map we find the symplectic field strength and check the
absence of self-duality for Euclidean Schwarzschild. We explicitly show the Ricci flatness and
shed light on the vacuum Einstein solution as is evident from the energy momentum tensor
that can be computed exactly exploiting the relation between spin connections and structure
constants for the Schwarzschild solution. We further study their geometric properties by
calculating the topological invariants of the U(1) gauge fields [80] derived from emergent
Schwarzschild metric.

3.2.1 Review of bottom-up Emergent Gravity formulation

The mathematical tool to quantize the dynamical system [81] is to specify the Poisson
structure θ such that

θ =
1

2

N∑
A,B=1

θAB
∂

∂xA
∧ ∂

∂xB
∈ Γ(∧2TM),

and then the differentiable manifold M endowed with θ describes a Poisson manifold (M, θ).
The Poisson structure defines an R-bilinear antisymmetric operation {, }θ: C∞(M)×C∞(M)→
C∞(M)

(f, g) 7→ {f, g}θ = 〈θ, df ⊗ dg〉 = θAB(x)
∂f(x)

∂xA
∂g(x)

∂xB
,
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and the Poisson bracket satisfy the Leibniz rule and Jacobi identity as follows:

{f, gh}θ = g{f, h}θ + {f, g}θh,
{f, {g, h}θ}θ + {g, {h, f}θ}θ + {h, {f, g}θ}θ = 0,

∀ f, g, h ∈ C∞(M),

where the Poisson structure θ reduces to symplectic structure when it is nondegerate.

Co-ordinates defined on a phase-space are known to be noncommutative (NC) under
Poisson-Bracket (PB) operations. This would imply that the phase-space employed in clas-
sical mechanics is a sort of NC space, where the position x and momenta p are noncommu-
tative variable pairs exhibit the PB relations:{

xi, xj
}

= {pi, pj} = 0,
{
xi, pj

}
= δij. (3.2.1.1)

NC spaces with position variables defined as x and product operations re-defined as the
Weyl-Moyal products are characterised by the PB relation:{

zi, zj
}

= θij. (3.2.1.2)

However, in case of phase-spaces, when symplectic U(1) gauge fields are involved, the gauge-
covariant momenta have the PB relation

{Πi,Πj}θ = Fij = ∂iAj − ∂jAi, Πi = pi − Ai, (3.2.1.3)

while the NC spaces exhibit the PB relation{
X i, Xj

}
θ

= θij − θimF̂mnθnj, F̂ij = ∂iAj − ∂jAi + {Ai, Aj}θ .

We shall demonstrate how to set up a noncommutative space. To this end, we shall start
with a few preliminaries, before proceeding to the construction of NC space employed in the
study of Emergent Gravity.

Noncommutative spaces and the Weyl-Moyal product

We will introduce and deal with the aspect of noncommutative geometry, via the Weyl-
Moyal ?-product. This is at the heart of our theory for creation of various U(1) gauge fields
we shall deal with as elaborated in [82], and requires our attention.

In regular commutative geometry, the usual co-ordinate commutator relation is:[
xi, xj

]
. = 0 ⇒ xi.xj = xj.xi. (3.2.1.4)

However, we shall now redefine the product operation as:

f(x).g(x) −→ f(x) ? g(x) =

[
exp

(
i

2
θij∂xi∂yj

)
f(x)g(y)

]
y=x

. (3.2.1.5)

The result is that the co-ordinate ?-product (for f(x) = xi, g(x) = xj) is now given as

xi ? xj =
[
exp

(
iθij∂xi∂yj

)
xiyj

]
x=y

= xi.xj +
i

2
θij 6= ±

(
xi.xj +

i

2
θji
)

= ±
(
xj ? xi

)
,

∴
[
xi, xj

]
?

= xi ? xj − xj ? xi = i
{
xi, xj

}
θ

= iθij. (3.2.1.6)

Thus, under the new product rule, the co-ordinates do not commute. One must keep in mind
that this does not necessarily imply that they anti-commute either, as has been shown.
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The Seiberg-Witten map

Now we shall consider a deformation of the co-ordinate via a map, formulated by Nathan
Seiberg, and Edward Witten [83], known as the Seiberg-Witten map given by:

fSW : M → N : xi −→ X i = xi + θimÂm, (3.2.1.7)

similar to how gauge-covariant momenta Πi is defined in (3.2.1.3). The ?-commutator of
these co-ordinates is given by: [

X i, Xj
]
?

= i
{
X i, Xj

}
θ
,{

X i, Xj
}
θ

=
{
xi, xj

}
θ

+ θjn
{
xi, Ân

}
θ

+ θim
{
Âm, x

j
}
θ

+ θimθjn
{
Âm, Ân

}
θ

=
{
xi, xj

}
θ
−
{
xi, Ân

}
θ
θnj + θim

{
Âm, x

j
}
θ
− i θim

[
Âm, Ân

]
?
θnj

= θij − θim∂mÂnθnj + θim∂nÂmθ
nj − i θim

[
Âm, Ân

]
?
θnj,

∴
[
X i, Xj

]
?

= iθij − iθim
(
∂mÂn − ∂nÂm − i

[
Âm, Ân

]
?

)
θnj. (3.2.1.8)

Now we shall define the noncommutative field strength in the usual noncommutative frame
as

F̂mn = ∂mÂn − ∂jÂm − i
[
Âm, Ân

]
?

= ∂mÂn − ∂jÂm +
{
Âm, Ân

}
θ
. (3.2.1.9)

For the LHS of (3.2.1.8), we can say that the Seiberg-Witten map (3.2.1.7) is a diffeomorphic
map fSW : M → N such that {

X i, Xj
}
θ

= Θij = (B + F )−1 . (3.2.1.10)

where Fab = ∂aAb − ∂bAa is the gauge field strength defined on commutative space. For the
LHS, we can further say

(B + F )−1 = [B (1 + θF )]−1 = (1 + θF )−1 θ ≡ θ − θF (1 + θF )−1 θ,

∴ θ − θF (1 + θF )−1 θ = θ − θF̂ θ ⇒ F̂ = F (1 + θF )−1 (3.2.1.11)

This concludes the setup of NC spaces and the formulation of NC U(1) gauge fields in terms
of dynamical U(1) gauge fields.

The application of Darboux theorem or Moser lemma[81] of symplectic geometry to elec-
tromagnetism defined on the symplectic space gives rise to an equivalence principle. An arbi-
trary deformation of symplectic deformation can not be distinguishable locally from canonical
form. The electromagnetism on symplectic space-time can be a theory of gravity[84]: Start-
ing with symplectic form ω0 = B, the deformation of ω0 generate dynamical gauge fields
such that ω1 = B + F , where F = dA. It is always possible to eliminate F by a suitable
coordinate transformation as far as the 2-form B is closed and nondegenerate because in this
case the gauge symmetry becomes a space-time symmetry rather than an internal symmetry.
This very fact indeed paves the way for a connection between NC gauge fields and space-time
geometry.
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For a given Poisson algebra (C∞(M), {, }θ), there is a natural map C∞(M)→ TM : f 7→
Xf between smooth functions in C∞(M) and vector fields in TM such that

Xf (g(y)) ≡ {g, f}θ(y) =

(
θµν

∂f(y)

∂yν
∂

∂yµ

)
g(y), (3.2.1.12)

for any g ∈ C∞(M). This means that we can obtain a vector field Xf = Xµ
f ∂µ ∈ Γ(TMy)

from a smooth function f ∈ C∞(M) defined at y ∈ M where Xµ
f (y) = θµν ∂f(y)

∂yν
. As long as

θ is a Poisson structure of M , the above formula (3.2.1.12) between Hamiltonian function f
and Hamiltonian vector field Xf is a Lie algebra homomorphism in the sense that

X{f,g}θ = −[Xf , Xg], (3.2.1.13)

where the right hand side is a Lie bracket between Hamiltonian vector fields.

From the above arguments, U(1) gauge fields on a symplectic manifold (M,B = θ−1) can
be transformed into a set of smooth functions

{Dµ(y) ∈ C∞(M)|Dµ(y) ≡ Bµνx
ν(y) = Bµνy

ν + Âµ(y), µ, ν = 1, · · · , 2n}
where xµ(y) ≡ yµ + θµνÂν(y) ∈ C∞(M)

(3.2.1.14)

After the map (3.2.1.12) is applied, we obtain Lie algebra homomorphism (3.2.1.13) between
the Poisson algebra (C∞(M), {, }θ)and the Lie algebra (Γ(TM), [, ]) of vector fields defined
by

{Vµ = V a
µ ∂a ∈ Γ(TM)|Vµ(f)(y) ≡ {Dµ(y), f(y)}θ, a = 1, · · · , 2n},

for any f ∈ C∞(M). The vector fields Vµ = V a
µ (y) ∂

∂ya
∈ Γ(TMy) take values in the Lie

algebra of volume preserving diffeomorphisms (∂aV
a
µ = 0). However, it can be shown that

the vector fields Vµ ∈ Γ(TM) are related to the orthonormal frames (vielbeins) Eµ by
Vµ = λEµ where λ2 = detV a

µ . The metric is constructed from these vector fields:

ds2 = δµνE
µ ⊗ Eν = λ2δµνV

µ
a V

ν
a dy

a ⊗ dyb,

where Eµ = λV µ ∈ Γ(T ∗M) are dual one-forms.

The electromagnetic fields in the symplectic space-time (M,B) manifest themselves only
as a deformation of symplectic structure such that the resulting symplectic space-time is
described by (M,B + F ) where F = dA = LXB. This is equivalent to a deformation of
frame bundle over space-time manifold M : ∂µ → Eµ = Ea

µ(y)∂a, or, in terms of dual frames,
dyµ → Eµ = Eµ

a (y)dya.

ds2 = δµνdy
µ ⊗ dyν → ds2 = δµνE

µ ⊗ Eν .

We can show the emergence of gravity from the gauge fields starting with the action:

Sp =
1

4g2
YM

∫
d2ny{Dµ(y), Dν(y)}θ{Dµ(y), Dν(y)}θ.

where gYM is s 2n-dimensional gauge coupling constant. Note that

{Dµ(y), Dν(y)}θ = −Bµν+∂µÂν(y)−∂νÂµ(y)+{Âµ(y), Âν(y)}θ = −Bµν+F̂µν(y), (3.2.1.15)
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and {Dµ(y), {Dν(y), Dλ(y)}θ}θ = ∂µF̂νλ(y) + {Âµ(y), F̂νλ(y)}θ = D̂µF̂νλ(y). (3.2.1.16)

By identifying f(y) = Dµ(y) and g(y) = Dν(y) with the relation of (3.2.1.15), the Lie algebra
homomorphism (3.2.1.13) leads to the following identity

XF̂µν
= [Vµ, Vν ],

where Vµ ≡ XDµ and Vν ≡ XDν and using (3.2.1.16) we have

XD̂µF̂νλ
= [Vµ, [Vν , Vλ]].

Thus the equation of motion and the Jacobi identity can be written as

{Dµ, {Dµ, Dν}θ}θ = D̂µF̂µν = 0,

{D[µ, {Dν , Dλ]}θ}θ = D̂[µF̂νλ] = 0.

With the help of the above formula we have the following insightful correspondence

D̂[µF̂νλ] = 0 ⇔ [V[µ, [Vν , Vλ]]] = 0,

D̂µF̂µν = 0 ⇔ [V µ, [Vµ, Vν ]] = 0.

These relations reduce to the Einstein field equations and the first Bianchi identity for the
Riemann tensor

[V µ, [Vµ, Vν ]] = 0 ⇔ Rµν −
1

2
gµνR =

8πG

c4
Tµν ,

[V[µ, [Vν , Vλ]]] = 0 ⇔ R[µνλ]ρ = 0.

where the 2nd equation above implies that individual Riemann curvature components can
be

[Vµ, [Vν , Vλ]] = Rµνλ
ρVρ (3.2.1.17)

This equation will be of relevance to us later, in the next subsection as we shall see.

3.2.2 Gauge Fields from Euclidean Schwarzschild

Starting with the Euclidean Schwarzschild metric, given by:

ds2 =

(
1− 2m

r

)
dτ 2 +

(
1− 2m

r

)−1

dr2 + r2(dΘ2 + sin2 Θ dφ2), (3.2.2.1)

we will study the symplectic gauge fields corresponding to this metric, and then will study
the geometry of the vector field tetrads arising from the gauge fields, and verify if it is self
dual or not. For now, our first requirement will be to construct a new co-ordinate chart that
will serve our purpose.

The Darboux chart

The Darboux Theorem [85] states that we can always locally eliminate dynamical gauge
fields that fluctuate about the background vacuum condensate through a local co-ordinate
transformation. In general relativity, the Equivalence Principle states that there always
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exists a diffeomorphism that equates a curved manifold locally to a flat manifold. This
theorem applies for Riemannian manifolds.

Thus, the Darboux Theorem is the equivalence principle for Symplectic manifolds. It
essentially states that the symplectic structure on a curved manifold can always be equated
to the symplectic structure on a flat manifold via a diffeomorphism. It can be summed up
by the mathematical statement below:

∃ ∂yµ

∂ξa
s.t. Fµν(x)

∂yµ

∂ξa
∂yν

∂ξb
= Bab (3.2.2.2)

The question here is what kind of diffeomorphism will satisfy equation (3.2.2.2). The crudest
answer we can give so far requires that we first write the perturbed symplectic structure as:

Fµν(x) = Bµν + λFµν(x)

such that λ sets the strength of the dynamical field perturbation to the symplectic structure.

In the case of a given metric, we can compute the individual curvature components. Em-
bedded within the curvature are the various SU(2)± gauge field components.

Rab = η
i(+)
ab F i(+) + η

i(−)
ab F i(−) ⇒ F i(±) =

1

4
η
i(±)
ab Rab

The simplest way to eliminate local dynamical gauge fields upon switching to the Darboux
co-ordinates, is to eliminate the individual SU(2)± gauge fields. This is necessarily true
as we shall see below. It is known that in maximally symmetric spaces, we can have the
curvature in the form:

Rabcd = gij(~x) εiab εjcd

In the case of self-dual curvature and fields, we can further elaborate it as:

Rab = α
(+)
ij (~x)η

i(+)
ab η

j(+)
cd + α

(−)
ij (~x)η

i(−)
ab η

j(−)
cd ⇒ F i(±) =

1

2
αij(±)η

j(±)
ab ea ∧ eb

where all the αij(±)(~x) tensor components are diagonal (ie. αij(±)(~x) = 0 for i 6= j). This
means that the dynamical gauge field strength affiliated with the metric as a linear combi-
nation of the individual components using the t’Hooft symbols as a basis.

F = ci(+)F i(+) + ci(−)F i(−)

⇒ Fab = ci(+)αij(+)(~x)η
j(+)
ab + ci(−)αij(−)(~x)η

j(−)
ab

Now, since these t’Hooft symbols never share the same non-zero matrix elements in the same
positions, we can say that the SU(2)± gauge fields are linearly independent 2-forms. From
linear algebra, we know that this implies that:

F = 0 ←→ αij(±)(~x) = 0 ⇒ F i(±) = 0 ←→ Rab = 0

This consequently eliminates the curvature as well, which describes the equivalence principle.
Thus, if we can choose a local co-ordinate frame that locally eliminates the curvature, we
will also have found the Darboux co-ordinates. We need local co-ordinates to obtain and
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analyze the gauge fields related to the metric. To do this, we could define a local co-ordinate
system which preserves the volume element formed by the tetrads of (3.2.2.1).

ν = ν ′ = ε1 ∧ ε2 ∧ ε3 ∧ ε4

⇒ e1 ∧ e2 ∧ e3 ∧ e4 = dt ∧
(
r2dr

)
∧ (sin Θ dΘ) ∧ dφ

(3.2.2.3)

These co-ordinates are known as the Darboux co-ordinates, the principle behind this design
being to make the tetrads equivalent to the exact differentials of the local choice of co-
ordinates.

Xa = {τ, ρ, x, y} =

{
t,
r3

3
,− cos Θ, φ

}
(3.2.2.4)

The metric, in these co-ordinates are then written as:

ds2 = f̃(ρ)dτ 2 +
1

f̃(ρ)

dρ2

(3ρ)
4
3

+ (3ρ)
2
3

{
dx2

1− x2
+
(
1− x2

)
dy2

}
, f̃(ρ) = 1− 2m

(3ρ)
1
3

(3.2.2.5)
Thus, for the inverse tetrads we have:(
∂

∂s

)2

= Ea ⊗ Ea = λ−2Va ⊗ Va

= f̃−1(ρ)

(
∂

∂τ

)2

+ f̃(ρ)(3ρ)
4
3

(
∂

∂ρ

)2

+
1

(3ρ)
2
3

{(
1− x2

)( ∂

∂x

)2

+
1

(1− x2)

(
∂

∂y

)2
}

(3.2.2.6)

Looking at the metric (3.2.2.1) again, one can easily write the two matrices:

εa =


f

1
2 (r) 0 0 0

0 f−
1
2 (r) 0 0

0 0 r 0
0 0 0 r sin Θ

 Ea =


f−

1
2 (r) 0 0 0

0 f
1
2 (r) 0 0

0 0 1
r

0
0 0 0 1

r sin Θ

 (3.2.2.7)

Using the Darboux co-ordinates of (3.2.2.4), we can define a symplectic form:

ω = ε1 ∧ ε2 + ε3 ∧ ε4 = dτ ∧ dρ+ dx ∧ dy = r2dt ∧ dr + sin Θ dΘ ∧ dφ (3.2.2.8)

such that one can re-obtain the original volume form ν

ν =
1

2
ω ∧ ω = r2 sin Θ dt ∧ dr ∧ dΘ ∧ dφ

that was shown in (3.2.2.3).

Complex Stereographic Projection - an alternate choice of coordinates

Now it is understood that the polar co-ordinate system chosen here results in a multi-
valuedness towards the poles that causes a breakdown of the one-to-one correspondence
between the Cartesian and polar variables, certifying a diffeomorphism, since the azimuthal
angle φ is now arbitrary.

(x, y, z)←→ (r,Θ, φ) (0, 0,±r)←→ (r, 0, ?)
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Thus, one needs to consider an alternate chart that preserves the correspondence. One such
choice of local co-ordinates is the complex stereographic projection. There are two different
charts for two different localities :

C = U+ = S2 − {x∞} : (x, y, z)←→
(
r, Z+, Z̄+

)
where Z+ =

x+ iy

r − z
(3.2.2.9)

C̄ = U− = S2 − {x0 } : (x, y, z)←→
(
r, Z−, Z̄−

)
where Z− =

x− iy
r + z

(3.2.2.10)

where locality C describes the entire sphere except for the north pole, while C̄ describes the
same sphere, only this time exempting the south pole, both with no arbitrary values in their
localities:

U− : (0, 0, r)←→ (r, 0, 0)

U+ : (0, 0,−r)←→ (r, 0, 0)

The correspondence to the polar co-ordinates is given by:

Z+ =
eiφ sin Θ

1− cos Θ
= eiφ cot

Θ

2
, Z− = (Z+)−1 dZ+ = − (Z−)−2 dZ−

Z+Z̄− = e2iφ
(
Z̄+

)−1
Z− = tan

Θ

2

(3.2.2.11)

However, to preserve the volume element under this diffeomorphism we need to obtain the
appropriate tetrad. This can be done by adjusting the wedge product:

−2i

(
1− cos Θ

2

)2

dZ+ ∧ dZ̄+ = sin Θ dΘ ∧ dφ

|Z+|2 =
sin2 Θ

(1− cos Θ)2
=

1 + cos Θ

1− cos Θ
⇒ 1 + |Z+|2 =

2

1− cos Θ

∴ ξ+ = −2i
dZ+ ∧ dZ̄+

(1 + |Z+|2)2 = sin Θ dΘ ∧ dφ ω = ∗ξ+ + ξ+ (3.2.2.12)

This 2-form holds the same (form invariant) expression in the other locality as well :

dZ+ ∧ dZ̄+ = |Z−|−4dZ− ∧ dZ̄− 1 + |Z+|2 = |Z−|−2
(
1 + |Z−|2

)
(3.2.2.13)

∴ ξ− = −2i
dZ− ∧ dZ̄−
(1 + |Z−|2)2 ω = ∗ξ− + ξ− (3.2.2.14)

The respective volume element is given by:

ν =
1

2
ω ∧ ω = −i r2

(1 + |Z±|2)2dt ∧ dr ∧ dZ± ∧ dZ̄±

This 2-form’s closure implies a potential field A, given by (3.2.2.8), (3.2.2.12) and (3.2.2.14)
as:

dω± = 0 ⇒ ω± = dA± = d

(
−r

3

3
dt+ i

Z±dZ̄± − Z̄±dZ±
1 + |Z±|2

)
⇒ A± = −r

3

3
dt+ i

Z±dZ̄± − Z̄±dZ±
1 + |Z±|2

+ dϕ
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Naturally, there is a chance of a constant or a first order exterior derivative seperating the
two potential form representations. To describe the connection between A+ and A− in the
region U+ ∩ U−, using (3.2.2.11) and (3.2.2.13) we have the following results:

dA+ = dA− ⇒ A+ = A− + dϕ (3.2.2.15)

Z+dZ̄+ − Z̄+dZ+ = −Z−dZ̄− − Z̄−dZ−
|Z−|4

A+ +
r3

3
dt = − 1

|Z−|2

(
A− +

r3

3
dt

)
⇒ A+ − A− = −iZ−dZ̄− − Z̄−dZ−

|Z−|2
(3.2.2.16)

Now, we can say that for a complex number:

z dz̄ − z̄ dz
|z|2

= −2i d (arg(z))

Thus, we can say that:

A+ − A− = −2 d (arg(Z−)) = 2 d (arg(Z+))

A+ = A− + 2 d (arg(Z+)) (3.2.2.17)

Thus, as we can see that the two potentials for the two different localities, despite the
same field strength form have a slight difference equivalent to the exterior derivative of the
angular phase of the complex number. Now we proceed to obtain the symplectic gauge fields
associated with the metric and study its salient properties.

Symplectic Analysis

Using the Darboux co-ordinates, we can obtain a symplectic gauge field set (recall eq.(3.2.1.14)):

Ca = BabX
b, θab =

1

2
η3
ab ⇒ Bab = −2η3

ab where η3
ab = η

3(+)
ab ( see Appendix 6.1).

In matrix form the set of symplectic gauge fields are

C = −2


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




τ
ρ
x
y

 = −2


ρ
−τ
y
−x

 = −2


1
3
r3

−t
φ

cos Θ


∴ C1 = −2

3
r3, C2 = 2t, C3 = −2φ C4 = −2 cos Θ (3.2.2.18)

We can now derive the vector fields corresponding to the symplectic gauge fields (3.2.2.18)
as the adjoint operation in the Poisson algebra and the result is shown in matrix form :

Va(f) = θ(Ca, f) V µ
a = −θµν∂νCa

∴ V =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




∂t
∂r
∂Θ

∂φ

( 1
3
r3 −t φ cos Θ

)
=


r2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 sin Θ


(3.2.2.19)
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We have the formula to relate the vector field with the tetrads:

Va = λEa va = λ−1ea (3.2.2.20)

To determine the value of λ, we make use of the relation:

λ2 = det V µ
a = r2 sin Θ ⇒ λ = r

√
sin Θ

Now, the determinants of the volume preserving vector field array V µ
a and that of the inverse

vector field array, or corresponding tetrad array are given by:

det(V µ
a ) =

∣∣∣∣∣∣∣∣
r2 0 0 0
0 1 0 0
0 0 1 0
0 0 0 sin Θ

∣∣∣∣∣∣∣∣ = r2 sin Θ det(V a
µ ) =

∣∣∣∣∣∣∣∣
1
r2

0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

sin Θ

∣∣∣∣∣∣∣∣ =
1

r2 sin Θ

Knowing that λ2 = r2 sin Θ we can say that:

det(V a
µ ) =

1

λ2
⇒ λ2 =

1

det(V a
µ )

⇒ v(x) = 1 (3.2.2.21)

thus concluding that the inverse tetrad fields satisfy equation (5.145) of [86].

Bianchi identity for Symplectic gauge and Vector fields

The Jacobi and Bianchi identities are well-studied in differential geometry. Both are deriva-
tives of a basic identity defined by:

d2ωn = 0

where ωn is an n-form. Having arisen from the same source, it is clear there is a connection
between the two identities.

{Ca, {Cb, Cc}θ}θ + {Cb, {Cc, Ca}θ}θ + {Cc, {Ca, Cb}θ}θ = 0~�
[Va, [Vb, Vc]] + [Vb, [Vc, Va]] + [Vc, [Va, Vb]] = 0

However, the above identities are valid only in regions where the metric is well defined.
They break down in the presence of singularity as evident in electrodynamics where we find
the Bianchi identity being invalid in the presence of static and dynamic charge (current)
distributions.

A = Ai dx
i Ai = {ϕ, ~A} F = dA Fij = ∂iAj − ∂jAi ≡ { ~E, ~B}

{ρ, ~J} = {0,~0} : dF = 0 −→ ~∇. ~E = 0, ~∇. ~B = 0

{ρ, ~J} 6= {0,~0} : dF 6= 0 −→ ~∇. ~E = ρ, ~∇. ~B = 0

The Schwarzschild space with Lorentzian signature has an irremovable singularity at the
origin, making the Bianchi identity invalid there. However, for the Euclidean signature
metric, the singularity is removable [87] under Kruskal-Szekeres co-ordinates which means
that for the Euclidean Schwarzschild instanton, the Bianchi identity is valid throughout the
space. Also, remembering (3.2.1.17), we can conclude that:

[Va, [Vb, Vc]] = 0 ⇒ Rabc
d = 0

showing that the local results are consistent with our emergent set-up.
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Seiberg Witten map and absence of self-duality

Seiberg and Witten showed [83] that there are two equivalent descriptions - commutative
and non-commutative of the low energy effective theory, depending on the regularization
scheme or path integral prescription for the open string ending on a D-brane.

Since these two descriptions arise from the same open string theory depending on differ-
ent regularizations, and the physics being independent of the regularization scheme, Seiberg
and Witten argued that they should be equivalent. Thus there must be a space-time field
redefinition between ordinary and NC gauge fields, so called the Seiberg-Witten (SW) map.

The relation for the NC field strength F̂ is given by [80]:

{Ca, Cb}θ = −Bab + F̂ab ⇒ F̂ab = Bab + {Ca, Cb}θ (3.2.2.22)

Using the C matrix from (3.2.2.18), we can write:

{Ca, Cb}θ =


0 2r2 0 0
−2r2 0 0 0

0 0 0 2 sin Θ
0 0 −2 sin Θ 0



∴ F̂ = −2


0 1− r2 0 0

−(1− r2) 0 0 0
0 0 0 1− sin Θ
0 0 −(1− sin Θ) 0

 (3.2.2.23)

At this point, we recapitulate the Seiberg-Witten map between the field strengths of the two
descriptions - commutative and non-commutative, given by the formula:

F̂ = (1 + FΘ)−1 F ⇒ F = F̂
(

1−ΘF̂
)−1

It is easy to see that the commutative gauge field strength Fµν

F = −2



0
1− r2

r2
0 0

−1− r2

r2
0 0 0

0 0 0
1− sin Θ

sin Θ

0 0 −1− sin Θ

sin Θ
0


(3.2.2.24)

shows no self-duality at all, noncommutative or otherwise.

The Seiberg-Witten field equation

Now we consider the equation of motion of the gauge fields (3.2.2.24). We start by looking
at the action corresponding to the gauge fields:

S =
1

4gYM

∫
d4y {Ca, Cb}2

θ, (3.2.2.25)

F̂ −B = (1 + Fθ).−1{F −B − F} = −G−1B,
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where we have chosen to substitute

G = 1 + Fθ =


r−2 0 0 0
0 r−2 0 0
0 0 (sin Θ)−1 0
0 0 0 (sin Θ)−1

 , (3.2.2.26)

into (3.2.2.25), where using (3.2.2.22), we can write the action now as:

S =
1

4gYM

∫
d4y

(
F̂ −B

)µν (
F̂ −B

)
µν

= − 1

4gYM

∫
d4x
√

Det(G)Tr(G−1BG−1B).

The equation of motion can be obtained by minimizing the variation of this action. Noting
that A[µν] = 1

2
(Aµν − Aνµ), the commutative equation of motion is derived as:

δS = 0 ⇒ δ

[∫
d4x
√

Det(G)Tr(G−1BG−1B)

]
= 0,

⇒
∫
d4x

[
δ
(√

Det(G)
)

Tr(G−1BG−1B) +
√

Det(G).δ
{

Tr(G−1BG−1B)
}]

= 0.

In operator form, we write:

δ
√

Det(G) =
1

2

√
Det(G)G−1δ(G) =

1

2

√
Det(G)

(
G−1

)
θ δF

G−1.G = I ⇒ δ
(
(G−1)

)
.G = −G−1.δ(G) = −G−1.θ.δF

⇒ δ
(
(G−1)

)
= −

(
θ.G−1

)
.δF.G−1

Thus, the minimized action variation is:∫
d4x
√

Det(G)
[(
θ.G−1

)
Tr(G−1BG−1B) + 4(G−1B

(
θ.G−1

)
BG−1)

]µν
δFµν = 0.

The variation of the gauge field F and its application into the action variation are:

δFµν = δ(∂µAν − ∂νAµ) = ∂µδAν − ∂νδAµ,

∴
∫
d4x
√

Det(G)
[(
θ.G−1

)
Tr(G−1BG−1B)− 4(G−1B

(
θ.G−1

)
BG−1)

][µν]
∂µδAν = 0.

Thus, the resulting equation of motion that is obtained for the first time here reads as:

∂µ

[√
G
{

(θG−1)µνTr(G−1BG−1B)− 4(θG−1BG−1BG−1)[µν]
}]

= 0. (3.2.2.27)

Substituting G from (3.2.2.26) into (3.2.2.27) above should give us the SW field equation for
the Euclidean Schwarzschild metric which is a typical example of AF gravitational instanton.

3.2.3 Geometric Analysis

Now we proceed to analyze the various geometric and topological properties of the Euclidean
Schwarzschild metric. This will involve obtaining the various topological invariants related
to the metric. We will start by obtaining the curvature components of the metric.
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Curvature analysis

We can extract the complete set of tetrads for the metric (3.2.2.1) as:

e1 =

√
1− 2m

r
dt e2 =

1√
1− 2m

r

dr

e3 = r dΘ e4 = r sin Θ dϕ

(3.2.3.1)

Starting with (3.2.3.1) and using Cartan’s 1st torsion-free structure equation, we have:

ω1
2 = −ω2

1 =
m

r2
dt ω4

3 = −ω3
4 = cos Θ dϕ

ω3
2 = −ω2

3 =

√
1− 2m

r
dΘ ω4

2 = −ω2
4 =

√
1− 2m

r
sin Θ dϕ

The overall ω (spin-connection) matrix is given by:

ωij =
1

r


0 a e1 0 0
−a e1 0 −b e3 −b e4

0 b e3 0 −c e4

0 b e4 c e4 0

 where


a = m

r
√
f(r)

b =
√
f(r)

c = cot θ

(3.2.3.2)

For the curvature components, we use the 2nd structure equation:

Ri
j = dωij + ωik ∧ ωkj (3.2.3.3)

Combining (3.2.3.2) and (3.2.3.3) gives the following non-vanishing curvature components:

R1
212 = −R1

221 = −R2
112 = R2

121 =
2m

r3

R1
313 = −R1

331 = −R3
113 = R3

131 = −m
r3

R1
414 = −R1

441 = −R4
114 = R4

141 = −m
r3

R2
323 = −R2

332 = −R3
223 = R3

232 = −m
r3

R2
424 = −R2

442 = −R4
224 = R4

242 = −m
r3

R3
434 = −R3

443 = −R4
334 = R4

343 =
2m

r3

(3.2.3.4)

In a compact form, the Rab matrix can be written as:

Rab =
m

r3


0 2x −y −z
−2x 0 −z̄ ȳ
y z̄ 0 2x̄
z −ȳ −2x̄ 0

 (3.2.3.5)

where we use the representation:

x = e1 ∧ e2 y = e1 ∧ e3 z = e1 ∧ e4

x̄ = e3 ∧ e4 ȳ = e4 ∧ e2 z̄ = e2 ∧ e3 and x ∧ x̄ = y ∧ ȳ = z ∧ z̄ = ν.

51



where ν is the volume form. Clearly, we can see that Rab matrix of (3.2.3.5) is not self dual
since each of its components are made of only one 2-form term, making it impossible to
exhibit self-duality.

∗Rab =
1

2

εab
cd

√
g
Rcd 6= Rab

With the Riemann tensor components (3.2.3.4), we can compute the Ricci tensor and scalar

Rij = ηklRikjl = ηimη
klRm

kjl ⇒ R11 = R22 = R33 = R44 = 0

R = ηijRij ⇒ R = 0 (3.2.3.6)

So the Euclidean Schwarzschild solution classified in the literature as AF gravitational in-
stanton does not exhibit self-duality although it is a Ricci-flat manifold. Since the spin
connections in eq. (3.2.3.2) are neither self-dual or anti-self dual, we can proceed to con-
struct both type of SU(2) gauge fields and the field strengths using respectively the spin
connections (3.2.3.2) and curvature components (3.2.3.5) using the following formula:

A(±)i =
1

4
η(±)i
µν ωµν F (±)i =

1

4
η(±)i
µν Rµν (3.2.3.7)

where the symbols η
(±)i
µν are the t’Hooft symbols (see Appendix Sec. 6.1). By construction

the field strengths should be either self-dual (for the + sign) or anti-self dual (for the -
sign). According to a general result (3.41) found in [78], the SU(2) gauge field (3.2.3.7)
automatically satisfy the self duality equation and hence these solution describes an SU(2)
Yang-Mills (anti) instanton on the space (3.2.2.1).

Thus, we have the following description for the SU(2)+ instanton and SU(2)− anti-instanton
gauge fields respectively listed as :

A(+)1 = − 1

4r
Tr


0 b e4 c e4 0
0 b e3 0 −c e4

a e1 0 b e3 b e4

0 −a e1 0 0


= − 1

2r
b e3

A(+)2 = − 1

4r
Tr


0 −b e3 0 c e4

0 b e4 c e4 0
0 a e1 0 0
a e1 0 b e3 b e4


= − 1

2r
b e4

A(+)3 = − 1

4r
Tr


−a e1 0 −b e3 −b e4

0 −a e1 0 0
0 b e4 c e4 0
0 −b e3 0 c e4


=

1

2r

(
a e1 − c e4

)

A(−)1 = − 1

4r
Tr


0 −b e4 −c e4 0
0 b e3 0 −c e4

a e1 0 b e3 b e4

0 a e1 0 0


= − 1

2r
b e3

A(−)2 = − 1

4r
Tr


0 −b e3 0 c e4

0 −b e4 −c e4 0
0 a e1 0 0
−a e1 0 −b e3 −b e4


= − 1

2r
b e4

A(−)3 = − 1

4r
Tr


−a e1 0 −b e3 −b e4

0 −a e1 0 0
0 −b e4 −c e4 0
0 b e3 0 −c e4


=

1

2r

(
a e1 + c e4

)
(3.2.3.8)

52



F (+)1 = − m

4r3
Tr


z −ȳ −2x̄ 0
y z̄ 0 2x̄
2x 0 z̄ −ȳ
0 −2x y z


= − m

2r3
(z + z̄)

F (+)2 = − m

4r3
Tr


−y −z̄ 0 −2x̄
z −ȳ −2x̄ 0
0 2x −y −z

2x 0 z̄ −ȳ


=

m

2r3
(y + ȳ)

F (+)3 = − m

4r3
Tr


−2x 0 −z̄ ȳ

0 −2x y z
z −ȳ −2x̄ 0
−y −z̄ 0 −2x̄


=
m

r3
(x+ x̄)

F (−)1 = − m

4r3
Tr


−z ȳ 2x̄ 0
y z̄ 0 2x̄
2x 0 z̄ ȳ
0 2x −y −z


=

m

2r3
(z − z̄)

F (−)2 = − m

4r3
Tr


−y −z̄ 0 −2x̄
−z ȳ 2x̄ 0
0 2x −y −z
−2x 0 −z̄ ȳ


=

m

2r3
(y − ȳ)

F (−)3 = − m

4r3
Tr


−2x 0 −z̄ −ȳ

0 −2x y z
−z ȳ 2x̄ 0
y z̄ 0 2x̄


=
m

r3
(x− x̄)

(3.2.3.9)

Remembering that the curvature components are given by (3.2.3.3), we can write:

Ra
b =

1

2
Ra

bµν dx
µ ∧ dxν ⇒ Ra

bcd = ιEdιEcR
a
b

ιEdιEc (dωab + ωam ∧ ωmb) = {∂c(ωdab)− ωcmd ωmab + ωc
a
m ωd

m
b}

∴ Ra
bcd = {∇c(ωd

a
b)− ωcmd ωmab + ωc

a
m ωd

m
b}

Thus we get the Ricci tensor to be

Rac = ∇c(fbab)− ωcmb ωmab − ωcma fbmb, ∇c(fbab) = 0.

Finally the Ricci scalar can be written as

R = −{ωamb ωmab + fama fbmb}

Now, since the Ricci scalar vanishes in our case (see eqn. (3.2.3.6)), we have:

R = 0 ⇒ (faba)
2 = ωabc ωcab (3.2.3.10)

From the Cartan structure equations, T a = dea + ωab ∧ eb, under torsion free condition
(T a = 0), we have:

dea = −ωab ∧ eb ⇒ ∂µe
a
ν = −ωµabe

b
ν

Upon contraction with Ec
ν (where Ea

ν = (eaν)
−1), we can proceed to write:

Ec
ν∂µe

a
ν = −ωµab

(
ebνEc

ν
)

⇒ ∂µ
(
Ec

νeaν
)︸ ︷︷ ︸

0

−eaν∂µEcν = −ωµabδ
b
c = −ωµac

∴ ∂µEc
ν = ωµ

a
cEa

ν (3.2.3.11)
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The tetrads and the vector fields in (3.2.2.19)-(3.2.2.20) exhibit the structure equations:

[Ea, Eb] = −fabcEc [Va, Vb] = −gabcVc (3.2.3.12)

If the vector fields {Ea} and {Va} are related by (3.2.2.20), then we can suppose that:

dVb = d (λEb) = dλ ∧ Eb − λωcbEc = d(log λ) ∧ Vb − ωcbVc

ιVadVb = VaVb = Va(log λ)Vb − λ ωacbVc
∴ [Va, Vb] = Va(log λ)Vb − Vb(log λ)Va − λ (ωa

c
b − ωbca)Vc

⇒ −gabcVc =
1

2
(gma

mVb − gmbmVa)− λ fabcVc

So we can write the structure constants in terms of the metric

fab
c =

1

λ

{
gab

c +
1

2
(gma

mδcb − gmbmδca)
}

⇒ fab
a =

1

λ
gab

a (3.2.3.13)

We also note the relation between spin connection and structure constant:

ωabc =
1

2

(
fabc − fbca + fcab

)
(3.2.3.14)

Finally, an important identity here is:

ρb = ga
ba Ψd =

1

2
εabcdgabc (3.2.3.15)

ρbρ
b = ΨdΨ

d ⇒ ρa = ±Ψa (3.2.3.16)

With a little effort, it can be shown (in any 2n-dimensions) [74, 84] that the right-hand side
of the Bianchi identity for vector fields is precisely equivalent to the first Bianchi identity of
Riemann curvature tensors, i.e.,

[Va, [Vb, Vc]] + cyclic = 0 ⇔ R[abc]d = 0, (3.2.3.17)

where [abc] denotes the cyclic permutation of indices. The equation (3.2.3.17) leads to a
cryptic result for Ricci tensors [74, 84]

Rab = − 1

λ2

[
g

(+)i
d g

(−)j
d

(
ηiacη

j
bc + ηibcη

j
ac

)
− g(+)i

c g
(−)j
d

(
ηiacη

j
bd + ηibcη

j
ad

)]
(3.2.3.18)

where ηiab and ηiab are self-dual and anti-self-dual t’Hooft symbols. To get the result (3.2.3.18),
we have to define the canonical decomposition of the structure equation (3.2.3.12) like

gabc = g(+)i
c ηiab + g(−)i

c ηiab. (3.2.3.19)

A notable point is that the right-hand side of (3.2.3.18) consists of purely interaction terms
between self-dual and anti-self-dual parts in (3.2.3.19) which is the feature withheld by
matter fields only [79]. A gravitational instanton which is a Ricci-flat, Kähler manifold can

be understood as either g
(−)i
c = 0 (self-dual) or g

(+)i
c = 0 (anti-self-dual) in terms of (3.2.3.19)

and so Rab = 0 in (3.2.3.18). Hence, the result (3.2.3.18) is consistent with the Ricci-flatness
of gravitational instantons. However (3.2.3.18) also has a nontrivial trace contribution, i.e.,
a nonzero Ricci scalar, due to the second part which does not exist in Einstein gravity.
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The content of the energy-momentum tensor defined by the right-hand side of the Bianchi
identity for vector fields becomes manifest by decomposing it into two parts, denoted by
8πGT

(M)
ab and 8πGT

(L)
ab , respectively [74, 84]:

8πGT
(M)
ab = − 1

λ2

(
gacdgbcd −

1

4
δabgcdegcde

)
, (3.2.3.20)

8πGT
(L)
ab =

1

2λ2

(
ρaρb −ΨaΨb −

1

2
δab
(
ρ2
c −Ψ2

c

) )
, (3.2.3.21)

where ρa ≡ gbab, Ψa ≡ −
1

2
εabcdgbcd. (3.2.3.22)

The first energy-momentum tensor (3.2.3.20) is traceless, i.e. 8πGT
(M)
aa = 0, which is a

consequence of the identity ηiabη
j
ab = 0 when applied to the first part of (3.2.3.18). The Ricci

scalar R ≡ Raa can be calculated by (3.2.3.21) to yield

R =
1

2λ2

(
ρ2
a −Ψ2

a

)
. (3.2.3.23)

The equation (3.2.3.23) immediately leads to the conclusion that a four-manifold emergent
from pure symplectic gauge fields (without source terms) can have a vanishing Ricci scalar
if and only if (see eqn. (3.2.3.15) and (3.2.3.16) and its derivation)

ρa = ±Ψa (3.2.3.24)

that is similar to the self-duality equation. When the relation (3.2.3.24) is obeyed, the second

energy- momentum tensor 8πGT
(L)
ab (3.2.3.21) identically vanishes which confirms that the

space of a Euclidean Schwarzschild solution is complete vacuum with no matter present.

Topological Invariants

In gravity topology can play a role at various levels. At the macroscopic level one may
consider multiplying corrected universes and wormholes, whilst at the microscopic Planck
scale space-time topology may subject to quantum fluctuations; in analogy with others QFTs
like sigma models and Yang-Mills theories, it is expected that the quantum tunneling process
between different topologies are dominated by finite-action solutions of Euclidean gravity,
the gravitational instantons.

One way to characterize topologically non-trivial solutions of the gravitational field equa-
tions is by the value of topologically invariant integral over certain polynomials of the curva-
ture tensor. In four dimensions there are essentially two independent topological invariants
the Euler Charcteristics and the Hirzebruch signature [62]. Every manifold with an asso-
ciated metric has topological invariants that characterize it, implying geometric similarities
between manifolds sharing the same invariant. Here, we will calculate two topological in-
variants of the Euclidean Schwarzschild instanton.

Euler characteristic

We can use the Riemann tensor components to compute the Euler characteristic χ(M):

χ(M) =
1

32π2

∫
M

εabcdRab ∧Rcd +
1

16π2

∫
∂M

εabcd
(
θab ∧Rcd −

2

3
θab ∧ θcp ∧ θpd

)
(3.2.3.25)
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where θAB is the second fundamental form of the boundary ∂M . It is defined by

θAB = ωAB − ω0AB, (3.2.3.26)

where ωAB are the actual connection 1-forms and ω0AB are the connection 1-forms if the
metric were locally a product form near the boundary [88]. The connection 1-form ω0AB will
have only tangential components on ∂M and so the second fundamental form θAB will have
only normal components on ∂M . The bulk part of the Euler characteristic is given by:

χbulk =
1

32π2

∫
M

εabcdRab ∧Rcd (3.2.3.27)

To compute the expression in (3.2.3.27), we only need to consider 6 combinations, where one
half is equivalent to the other half. These combinations are given as:

R12 ∧R34 = R34 ∧R12

R13 ∧R24 = R24 ∧R13

R14 ∧R23 = R23 ∧R14

(3.2.3.28)

Since each permutation of 2 index pairs yields 2 combinations, and as shown in (3.2.3.28),
equivalent pairs of combinations exist, we can say that (3.2.3.27) reduces to:

χbulk =
1

4π2

∫
M

(
ε1234R12 ∧R34 + ε1324R13 ∧R24 + ε1423R14 ∧R23

)
(3.2.3.29)

We can use the Bianchi identity for curvature tensor to show that:

Rab ∧Rcd = dωab ∧Rcd + ωap ∧ ωpb ∧Rcd

dωab ∧Rcd = d (ωab ∧Rcd)

ωam ∧ ωmb ∧Rcd = ωap ∧ ωpb ∧ dωcd + ωap ∧ ωpb ∧ ωcq ∧ ωqd
∴ ωap ∧ ωpb ∧Rcd = d (ωap ∧ ωpb ∧ ωcd) + ωap ∧ ωpb ∧ ωcq ∧ ωqd (3.2.3.30)∫

M

Rab ∧Rcd =

∫
M

d (ωab ∧Rcd + ωam ∧ ωmb ∧ ωcd) +

∫
M

ωam ∧ ωmb ∧ ωcn ∧ ωnd,

=

∫
∂M

(ωab ∧Rcd + ωam ∧ ωmb ∧ ωcd) +

∫
M

ωam ∧ ωmb ∧ ωcn ∧ ωnd (3.2.3.31)

We can see that for the 2nd term in (3.2.3.30) and for the 3rd term in (3.2.3.31) that:

εabcdωap ∧ ωpb = εabcd
(
ωac ∧ ωcb + ωad ∧ ωdb

)
∴ εabcdωap ∧ ωpb ∧ ωcq ∧ ωqd = 0 (3.2.3.32)

Using (3.2.3.32) we can see that (3.2.3.31) becomes:∫
M

Rab ∧Rcd =

∫
∂M

(ωab ∧Rcd + ωam ∧ ωmb ∧ ωcd) (3.2.3.33)

For the 2nd term, we refer to (3.2.3.2) to point out that besides the 2nd row and column,
all other rows and columns have only 2 non-zero elements (the first one has only one). ie.:∑

m

εabcdωap ∧ ωpb ∧ ωcd = εabcd
(
ωac ∧ ωcb ∧ ωcd + ωad ∧ ωdb ∧ ωcd

)
= 0; ∀ c, d 6= 2
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Thus, the different non-vanishing components of (3.2.3.33) are:∫
M

R12 ∧R34 =

∫
∂M

ω12 ∧R34 =

∫
∂M

2m2

r3
dt ∧ dΘ ∧ sin Θdφ (3.2.3.34)∫

M

R13 ∧R24 = −
∫
∂M

ω12 ∧ ω2
3 ∧ ω24 = −

∫
∂M

m

r2

(
1− 2m

r

)
dt ∧ dΘ ∧ sin Θdφ

r=2m−−−→ 0

(3.2.3.35)∫
M

R14 ∧R23 =

∫
∂M

ω12 ∧ ω2
4 ∧ ω23 = −

∫
∂M

m

r2

(
1− 2m

r

)
dt ∧ dΘ ∧ sin Θdφ

r=2m−−−→ 0

(3.2.3.36)

Applying (3.2.3.33), (3.2.3.34), (3.2.3.35) and (3.2.3.36) to (3.2.3.29) gives us:

χbulk =
1

4π2

∫
∂M

ω12 ∧R34 =
1

4π2

2m2

r3
h

∫ β

0

dt ∧
∫ π

0

sin Θ dΘ ∧
∫ 2π

0

dφ =
2m2

πr3
h

β (3.2.3.37)

Here, we compactify the imaginary time, such that it lies within the range: 0 ≤ t ≤ β
(generalization of the condition of the removal of conical singularity for our class of metrics).
The upper limit β (realized as inverse temperature for the black hole) is given by:

κβ = 2π where κ =
1

2

∂rgtt√
gttgrr

∣∣∣∣
r=rh

=
1

2
(∂rf(r))r=rh =

m

r2
h

∴ β =
2π

κ
=

2πr2
h

m
(3.2.3.38)

Thus, for Schwarzschild, rh = 2m and applying (3.2.3.38) in (3.2.3.37) the bulk part is:

χbulk =
4m

rh
= 2

The boundary integral term of the Euler characteristics is given by:

χboundary =
1

16π2

∫
∂M

εabcd
(
θab ∧Rcd −

2

3
θab ∧ θcp ∧ θpd

)
Recall that, the 1-form θab is given by:

θab = ωab − ω0ab, where ω0ab = (ωab)r=∞

Only the component along the normal to the surface is to be treated differently ie.:

θ12 = ω12

The θab matrix is given by:

θab =


0 m

r2
dt 0 0

−m
r2
dt 0

(
1−

√
1− 2m

r

)
dΘ

(
1−

√
1− 2m

r

)
sin Θ dϕ

0 −
(

1−
√

1− 2m
r

)
dΘ 0 0

0 −
(

1−
√

1− 2m
r

)
sin Θ dϕ 0 0


57



In this case, since ∂M ⇒ r =∞, when θ12 vanishes as r →∞. Thus, we can effectively
say, θab = 0 which corresponds to setting χboundary = 0 so that we can write:

χ(M) = χbulk + χboundary = 2 + 0 = 2 (3.2.3.39)

which is the value of Euler characteristic for Euclidean Schwarzschild metric. (see also [89]
for a similar computation which was reported there for the first time.)

Recalling how the Schwarzschild metric is a sum of an SU(2)L instanton and SU(2)R anti-
instanton resulting from the SU(2)+ and SU(2)− gauge fields (3.2.3.9), we can further cal-
culate the Euler characteristics using:

η(±)i
µν η

(±)i
λγ = δµλδνγ − δµγδνλ ± εµνλγ ⇒ εµνλγ =

1

2

(
η(+)i
µν η

(+)i
λγ − η

(−)i
µν η

(−)i
λγ

)
Thus (3.2.3.27) reduces to

1

32π2

∫
M

εabcdRab ∧Rcd =
1

4π2

∫
M

(
F (+)i ∧ F (+)i − F (−)i ∧ F (−)i

)
It is straightforward to express the topological invariant in terms of SU(2) gauge fields.

∴ χbulk =
1

4π2

∫
M

(
F (+)i ∧ F (+)i − F (−)i ∧ F (−)i

)
(3.2.3.40)

We could now follow the same process as before invoking Stoke’s theorem and convert
(3.2.3.40) into a boundary integral using (3.2.3.33) to obtain:

εabcd

32π2

∫
M

Rab ∧Rcd =
εabcd

32π2

∫
∂M

(ωab ∧Rcd + ωam ∧ ωmb ∧ ωcd)

=
1

4π2

∫
∂M

(
A(+)i ∧ F (+)i − A(−)i ∧ F (−)i

)
+
εabcd

32π2

∫
∂M

ωam ∧ ωmb ∧ ωcd

Seeing how the 2nd integrand vanishes for most combinations, and otherwise vanishes on the
boundary itself, we can focus on the 1st integrand alone.

χbulk =
1

4π2

∫
∂M

(
A(+)i ∧ F (+)i − A(−)i ∧ F (−)i

)
= χ+

bulk + χ−bulk (3.2.3.41)

Thus, for (3.2.3.41) we can compute the Euler character bulk values using (3.2.3.8) and
(3.2.3.9) as:

χ+
bulk =

m2

2r3
hπ
β +

m

4r2
hπ
β =

(
1

16mπ
+

1

16mπ

)
β = 1

χ−bulk = − 1

4π2

∫
∂M

− m

4r4

(
be3 ∧ z − be4 ∧ y + 2ae1 ∧ x̄− 2ce4 ∧ x

)
= 1

For verification, we evaluate the contributions according to (3.2.3.40) using (3.2.3.9) to get:

χ+
bulk =

1

4π2

∫
M

F (+)i ∧ F (+)i =
m2

r3
hπ
β =

2m

rh
= 1

χ−bulk = − 1

4π2

∫
M

F (−)i ∧ F (−)i = − 1

4π2

∫
M

−
(
m2

2r6
+
m2

2r6
+

2m2

r6

)
ν = 1

Thus, we can clearly see that the overall bulk value of the Euler characteristic is the sum of
the two individual values due to SU(2)+ and SU(2)− gauge fields, giving:

χbulk = χ+
bulk + χ−bulk = 1 + 1 = 2 (3.2.3.42)

This also shows both gauge fields contributing eqally to the overall Euler invariant.
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Hirzebruch signature

Now we turn our attention to the other topological invariant, the Hirzebruch signature τ(M):

τ(M) = − 1

24π2

(∫
M

Tr R ∧R +

∫
∂M

Tr θ ∧R + ηS(∂M)

)
(3.2.3.43)

The bulk part of the integral (3.2.3.43) can be given as:

τbulk = − 1

24π2

∫
M

Tr R ∧R = − 1

24π2

∫
M

Rab ∧Rab

However, we can see from (3.2.3.5) that every element of the curvature 2-forms has a single
2-form term. Thus, we can write:

Rab ∧Rab = 0 ⇒ τbulk = 0

Now, as in the case of χ(M), the boundary integral term also vanishes following the same
logic.

θab ∧Rab = 0 ⇒ τboundary = 0

This leaves us with nothing but the last term, known as the spectral asymmetry term ηS(∂M)
which in this case is also known to vanish. Therefore:

τ(M) = 0 (3.2.3.44)

As before, analyzing from the point of view of SU(2)± gauge fields lets us use:

δµλδνγ − δµγδνλ =
1

2

(
η(+)i
µν η

(+)i
λγ + η(−)i

µν η
(−)i
λγ

)
to write the bulk part of the signature complex as

τbulk = − 1

24π2

∫
M

Tr (R ∧R) = −2

3

(
χ+
bulk − χ

−
bulk

)
=

2

3
(−1 + 1) = 0

where we can see that the individual bulk contribution is:

τbulk = τ+
bulk + τ−bulk

τ+
bulk = −2

3
χ+
bulk = −2

3
τ−bulk =

2

3
χ−bulk =

2

3

(3.2.3.45)

which concludes our computation of topological invariants of the Euclidean Schwarzschild
metric.

3.3 Reduction of the generalized Darboux-Halphen sys-

tem

Ablowitz et al [67, 90] studied the reduction of the SDYM equation with an infinite-dimensional
Lie algebra to a 3×3 matrix differential equation. This led to a generalized Darboux-Halphen
(gDH) system which differs from the DH system by a common additive term. The gDH sys-
tem was also originally solved by Halphen [91] in terms of general hypergeometric functions
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and whose general solution admits movable natural barriers which can be densely branched.

Here, we discuss certain aspects related to the integrability of the gDH system. Some of
these features were implicit in the original formulation of the system but were never made
concrete. Specifically, we show that it is possible to derive naturally from the gDH system
yet another reduced system of equations which satisfy a constraint. This constrained system
resembles a non-autonomous Euler equation similar to that derived by Dubrovin [92] but
with non-homogeneous terms. Furthermore, we derive a simple Lax pair for the constrained
system.

3.3.1 The gDH system

In this subsection, we introduce the gDH system for the complex functions ωi(t)

ω̇i = ωjωk − ωi (ωj + ωk) + τ 2 , i 6= j 6= k = 1, 2, 3, cyclic . (3.3.1.1)

The common additive term τ 2 is elaborated as

τ 2 =α2
1x2x3 + α2

2x3x1 + α2
3x1x2 with xi = ωj − ωk ,

i 6= j 6= k, cyclic , x1 + x2 + x3 = 0 ,
(3.3.1.2)

where αi , i = 1, 2, 3 are complex constants. As mentioned in Section 1, the gDH system
arises from a particular reduction of the SDYM equations [67, 90]. They also appear in the
study of SU(2)-invariant, hypercomplex four-manifolds [93]. In Section 3, we will provide a
derivation of the gDH system from the SDYM reductions following [67].

In the following, we derive from (3.3.1.1) a reduced system of differential equations which
satisfy a constraint.

Constrained gDH system

Note that the variables xi defined in (3.3.1.2) satisfy the equations

ẋi = −2ωixi , i = 1, 2, 3 , (3.3.1.3)

which are obtained from (3.3.1.1) by taking the difference of the equations for ωj and ωk.
Using (3.3.1.3), the gDH equations (3.3.1.1) can be re-expressed as follows:

ω̇i −
ωi
2

(
ẋj
xj

+
ẋk
xk

)
= ωjωk + τ 2 .

Then by defining new variables Wi , i = 1, 2, 3 via

Wi :=
ωi√
xjxk

, i 6= j 6= k, cyclic , (3.3.1.4)

one obtains the system

Ẇi = xiWjWk +
τ 2

√
xjxk

. (3.3.1.5)

It follows from (3.3.1.5) that

3∑
i=1

WiẆi = W1W2W3

3∑
i=1

xi −
τ 2

2x1x2x3

3∑
i=1

ẋi = 0
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after using (3.3.1.4), (3.3.1.3) and the fact that x1 + x2 + x3 = 0. Thus, one finds that the
quantity

Q :=
3∑
i=1

W 2
i =

ω2
1

x2x3

+
ω2

2

x1x3

+
ω2

3

x1x2

is a constant. However, the quantity Q is not a conserved quantity of (3.3.1.5), rather
Q = −1 is an identity which follows from the definition of the variables Wi in (3.3.1.4).
Indeed, a direct calculation using x1 + x2 + x3 = 0, shows that

Q =
ω2

1x1 + ω2
2x2 + ω2

3x3

x1x2x3

=
ω2

1x1 + ω2
2x2 − ω2

3(x1 + x2)

x1x2x3

=
x1(ω1 − ω3)(ω1 + ω3) + x2(ω2 − ω3)(ω2 + ω3)

x1x2x3

=
x1x2(ω2 − ω1)

x1x2x3

= −x1x2x3

x1x2x3

= −1

Therefore, the system in (3.3.1.5) is a reduction of the original gDH system; the reduced
system can be regarded as a third order system for the Wi satisfying the constraint Q = −1.
Note that the DH equations (3.4.1) being a special case (αi = 0) of (3.3.1.1), also admits
the same reduced system (3.3.1.5) as above but with τ = 0.

Remark: A third order system similar to (3.3.1.5) but without the non-homogeneous term,
was introduced in [94, 95] where the authors derived a family of self-dual, SU(2)-invariant,
Bianchi-IX metrics obtained from solutions of a special Painlevé-VI equation. In that case,
the vanishing of the anti-self-dual Weyl tensor and scalar curvature led to a sixth order
system described by the classical DH system (3.4.1) coupled to another third order system.
There, the Wi variables represented different quantities although defined in the same way
as in (3.3.1.4). The quantity Q was a first integral (instead of a number) in that case,
depending on the initial conditions for the sixth order system. This sixth order system
considered in [94, 95] also admits a special reduction to the third order DH system when
the metric is self-dual Einstein. It is this latter case which corresponds to the homogeneous
version of (3.3.1.5) above with Q = −1.

Next, we discuss the solution of the reduced system via the solutions of the original gDH
system (3.3.1.1).

Solutions

As mentioned in the Introduction, Halphen [91] solved the gDH system and expressed its
solution in terms of the general hypergeometric equation. Below we discuss a method of
solution first given by Brioschi [96].

Let us first introduce a function s(t) via the following ratio:

s =
ω3 − ω2

ω1 − ω2

= −x1

x3

. (3.3.1.6)

Taking the derivative of ln s in (3.3.1.6) and then using (3.3.1.3), the xi can be written as

x1 = −1

2

ṡ

s− 1
, x2 =

1

2

ṡ

s
, x3 =

1

2

ṡ

s(s− 1)
. (3.3.1.7)

Using (3.3.1.3) once more, the gDH variables ωi can be expressed in terms of s, ṡ and s̈ as

ω1 = −1

2

d

dt

[
ln

(
ṡ

s− 1

)]
, ω2 = −1

2

d

dt

[
ln

(
ṡ

s

)]
, ω3 = −1

2

d

dt

[
ln

(
ṡ

s(s− 1)

)]
.

(3.3.1.8)
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Substituting the above expressions for ωi into the gDH system (3.3.1.1) yields the following
third order equation for s(t)

...
s

ṡ
− 3

2

(
s̈

ṡ

)2

+
ṡ2

2

[
1− α2

1

s2
+

1− α2
2

(s− 1)2
+
α2

1 + α2
2 − α2

3 − 1

s(s− 1)

]
= 0 , (3.3.1.9)

also known as the Schwarzian equation. Equation (3.3.1.9) can be linearized in terms of the
hypergeometric equation as follows. Let χ1(s) and χ2(s) be any two linearly independent
solution of the hypergeometric equation

χ′′ +
(1− α1

s
+

1− α2

s− 1

)
χ′ +

(α1 + α2 − 1)2 − α2
3

4s(s− 1)
χ = 0 . (3.3.1.10)

If the independent variable t in the gDH system is defined by

t(s) =
χ2(s)

χ1(s)
, (3.3.1.11)

then the inverse function s(t) satisfies the Schwarzian equation above. Thus, it is possible to
express the gDH variables ωi in terms of the hypergeometric solution χ1 and its derivative.

The reduced system (3.3.1.5) takes a simple but interesting form if we consider a variable
change from t to s and re-express the corresponding equations. First, let us define new
variables

Ŵ1 =
W1

2
, Ŵ2 =

W2

2i
, Ŵ3 =

W3

2i
, (3.3.1.12)

where i :=
√
−1. Then by using the parametrization of the xi from (3.3.1.7) in (3.3.1.5), one

obtains a non-autonomous, non-homogeneous version of the Euler “top” equations, namely,

Ŵ1

′
=
Ŵ2Ŵ3

s− 1
+

f(s)√
s− 1

, Ŵ2

′
=
Ŵ1Ŵ3

s
− f(s)√

s
, Ŵ3

′
=

Ŵ1Ŵ2

s(s− 1)
− f(s)√

s(s− 1)
,

where f(s) =
α2

1(s− 1)− α2
2s− α2

3s(s− 1)

4s(s− 1)
,

(3.3.1.13)

and “prime” indicates derivative with respect to s. It follows from (3.3.1.13) that

Ŵ1Ŵ1

′
− Ŵ2Ŵ2

′
− Ŵ3Ŵ3

′

= Ŵ1Ŵ2Ŵ3

(
1

s− 1
− 1

s
− 1

s(s− 1)

)
+ f(s)

(
Ŵ1√
s− 1

+
Ŵ2√
s

+
Ŵ3√
s(s− 1)

)
= 0 .

The interested reader can easily verify using (3.3.1.12), (3.3.1.6) and (3.3.1.4) that the co-

efficient of f(s) vanishes identically in above, thereby showing that Ŵ1

2
− Ŵ2

2
− Ŵ3

2
is a

constant. Moreover, from (3.3.1.12) one can easily compute

γ = Ŵ1

2
− Ŵ2

2
− Ŵ3

2
=

1

4

3∑
i=1

W 2
i =

1

4
Q = −1

4
.

Thus, the reduced system (3.3.1.13) for the Ŵi satisfy the constraint γ = −1
4
.

62



For for the DH case, f(s) = 0 (because αi = 0), then (3.3.1.13) becomes a homogeneous,
non-autonomous Euler system that arises in hydrodynamic systems [92] as well as in self-
dual Einstein equations for SU(2)-invariant Bianchi 1X metrics [94, 95, 97] (see Remark
in Section 2.1). It is known that this homogeneous system can be solved in terms of a
special Painlevé VI equation via a transformation discussed in [98], or from the Schlesinger
equations associated with the Painlevé VI equation [97]. In general, the solution for the
reduced system (3.3.1.13) can be expressed in terms of hypergeometric functions utilizing
the transformation given by (3.3.1.11) and the parametrization of xi and ωi given in (3.3.1.7)
and (3.3.1.8). One also uses the relation ṡ = 1/t′(s) = χ2

1/W where χ1(s) is a solution of
(3.3.1.10) and W (s) := W (χ1, χ2) is the Wronskian of two independent solutions. Finally,
taking into account the definitions from (3.3.1.4) and (3.3.1.12) the explicit form of the
solutions are

Ŵ1(s) = −s
√
s− 1

2

(
2
χ′1
χ1

− W ′

W
− 1

s− 1

)
, Ŵ2(s) =

√
s(s− 1)

2

(
2
χ′1
χ1

− W ′

W
− 1

s

)
,

Ŵ3(s) =

√
s(s− 1)

2

(
2
χ′1
χ1

− W ′

W
− 1

s
− 1

s− 1

)
,

.

Moreover, applying Abel’s formula to (3.3.1.10), W ′/W is expressed as

W ′

W
= −

(
1− α1

s
+

1− α2

s− 1

)
.

A more direct way to solve the Ŵi is to reduce the system (3.3.1.13) into a single, scalar

ordinary differential equation for one of the variables. Recall that the Ŵi satisfy the following
constraints, namely,

Ŵ1

2
− Ŵ2

2
− Ŵ3

2
= −1

4
,

Ŵ1√
s− 1

+
Ŵ2√
s

+
Ŵ3√
s(s− 1)

= 0 . (3.3.1.14)

By regarding these constraints as two equations for the Ŵi, it is possible to solve for any two
of them, say, Ŵ1 and Ŵ3 in terms of Ŵ2. Thus, one obtains

Ŵ1 =
c−
√
s Ŵ2√

s− 1
, Ŵ3 =

Ŵ2 − c
√
s√

s− 1
, c = ±1

2
. (3.3.1.15)

Next, substituting the expressions for Ŵ1 and Ŵ3 from (3.3.1.15) into the equation for Ŵ2

in (3.3.1.13), yields a Riccatti equation

√
s(s− 1)Ŵ2

′
+ Ŵ2

2
− c s+ 1√

s
Ŵ2 + (s− 1)f(s) +

1

4
= 0 ,

where the rational function f(s) is given in (3.3.1.13). If we take c = 1
2
, then the Riccatti

equation can be linearized by the following transformation

Ŵ2√
s(s− 1)

=
1

2

(1− α2

s− 1
− α1

s

)
+
χ′

χ

where the function χ(s) satisfies the hypergeometric equation (3.3.1.10). If c = −1
2
, then

one can still linearize the resulting Riccatti equation but the parameters in the underlying
hypergeometric equation are related to but are not the same as the αi.
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3.3.2 The DH-IX matrix system

So far we have dealt with the gDH system which consists of the DH equations together with
a common additive term τ 2 appearing in all three equations in (3.3.1.1). In this subsection,
we will show how the gDH system can be derived from a 3 × 3 matrix system which arise
as a reduction of the SDYM field equations. We start by reviewing the reduction process on
the SDYM equations following [67].

Consider a gauge group G which may be a finite or infinite-dimensional Lie group. The
gauge field F is a 2-form taking values in the associated Lie algebra g, and is given in terms of
the g-valued connection 1-form (gauge potential) A as F = dA−A∧A. In a local co-ordinate
system {xa} a = 0, 1, 2, 3 the gauge field components are given by Fab = ∂aAb−∂bAa−[Aa, Ab]
where ∂a denotes partial derivative with respect to xa and [ , ] denotes the Lie bracket in g.
The self-duality condition implies that F = ∗F where ∗F is the dual 2-form. In terms of
components of F , the self-duality condition is equivalent to

F0i = Fjk , i 6= j 6= k , cyclic . (3.3.2.1)

If the connection 1-form is restricted to depend only on the co-ordinate x0 := t, then without
loss of generality, one can choose a gauge where A0 = 0. Consequently, Ai = Ai(t) for
i = 1, 2, 3, and the resulting SDYM equations (3.3.2.1) becomes the Nahm equations [99]

Ȧi = [Aj, Ak] , i 6= j 6= k , cyclic . (3.3.2.2)

Suppose the Lie algebra g is chosen to be sdiff(S3) - the infinite-dimensional Lie algebra of
diffeomorphisms on S3 generated by the left-invariant vector fields Xi satisfying the relation
[Xi, Xj] = Xk, i 6= j 6= k , cyclic . Furthermore, let the Ai be of the form

Ai = −
3∑

j,k=1

Mij(t)OjkXk (3.3.2.3)

where M(t) is a 3 × 3 matrix with entries Mij and Oij ∈ SO(3) represents a point on S3.
Then the Nahm equations (3.3.2.2) lead to the following matrix ordinary differential equation
for M(t) [67, 93]

Ṁ = C(M) +MTM − (TrM)M , (3.3.2.4)

where C(M) denotes the matrix of cofactors of M . Equation (3.3.2.4) is a ninth-order
coupled system of equations for the matrix elements of M(t) and was referred to as the
DH-IX system in [90, 67]. Indeed, by expressing the matrix elements of M as

M =

 Ω1 θ3 φ2

φ3 Ω2 θ1

θ2 φ1 Ω3


the component equations in (3.3.2.4) can be explicitly written out as

Ω̇i = ΩjΩk − Ωi(Ωj + Ωk)− θiφi + θ2
j + φ2

k

θ̇i = − (θi + φi) Ωi − (θi − φi) Ωk + θk (θj + φj) (3.3.2.5)

φ̇i = − (θi + φi) Ωi + (θi − φi) Ωj + φj (θk + φk) ,

i 6= j 6= k = 1, 2, 3, cyclic. Equations (3.3.2.5) can be regarded as the original DH system
but with individual additive terms. We next show how to recast the DH-IX equation into
the gDH system (3.3.1.1) where the equations have a common additive term.
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Reduction of DH-IX to the gDH system

Note that the equations for the off-diagonal entries in (3.3.2.5) involve symmetric and skew-
symmetric combinations of the off-diagonal elements. This fact can be exploited further
to simplify the matrix equation (3.3.2.4) as follows: First, the cofactor matrix C(M) =
(adjM)T , where the adjoint matrix can be expressed as

adjM = M2 − (TrM)M +
1

2

(
(TrM)2 − TrM2

)
I

using the Caley-Hamilton theorem for 3× 3 matrices. In above, Tr denotes the matrix trace
and I is the identity matrix. Next, substituting the transpose of the above expression for
C(M) into (3.3.2.4) yields

Ṁ = (MT − (TrM)I)(M +MT ) +
1

2

(
(TrM)2 − TrM2

)
I . (3.3.2.6)

Equation (3.3.2.6) motivates decomposing the matrix M into its symmetric and skew-
symmetric parts and re-expressing the DH-IX system in terms of these components as illus-
trated below. Let us consider the following decomposition of M

M = Ms +Ma = P (d+ a)P−1 , (3.3.2.7)

where the symmetric part Ms is further diagonalized by a orthogonal matrix P (P T = P−1)
and the skew-symmetric part is expressed as Ma = PaP−1 with

d =

 ω1 0 0
0 ω2 0
0 0 ω3

 , a =

 0 τ3 −τ2

−τ3 0 τ1

τ2 −τ1 0

 . (3.3.2.8)

Substituting (3.3.2.7) into (3.3.2.6) yields the following set of matrix equations for P, a and
d,

Ṗ+Pa = 0 , ȧ+ad+da = 0 , ḋ = 2d2−2(Trd)d+
1

2

(
Trd2−(Trd)2−2Tra2

)
I (3.3.2.9)

The last equation of (3.3.2.9) gives the gDH system (3.3.1.1) with τ 2 = τ 2
1 + τ 2

2 + τ 2
3 . Then,

using (3.3.1.3) one can integrate the second equation in (3.3.2.9), i.e.,

τ̇i = −τi(ωj + ωk) ⇒ τ 2
i = α2

ixjxk = α2
i (ωj − ωi) (ωi − ωk) , i 6= j 6= k, cyclic ,

(3.3.2.10)

τ1 = κ1
ṡ√

s(s− 1)
τ2 = κ2

ṡ

s
√

(s− 1)
τ3 = κ3

ṡ√
s(s− 1)

, (3.3.2.11)

and where αi are integration constants. Combining the last equation of (3.3.2.9) with
(3.3.2.10), yields the gDH system (3.3.1.1). The first equation in (3.3.2.9) is linear and
can be solved for P given the τi although it is not possible to obtain closed form solutions
for P except for special cases. We illustrate one such special case in the example below.

The DH-V system

We now discuss a fifth order reduction of the DH-IX system where the matrix P introduced
in (3.3.2.7) can be expressed in closed form. Let us consider the case in which the DH-IX
matrix has the special form

M =

 Ω1 θ 0
φ Ω2 0
0 0 Ω3

 .
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Then (3.3.2.5) becomes a fifth-order system given by

Ω̇1 = Ω2Ω3 − Ω1(Ω2 + Ω3) + φ2

Ω̇2 = Ω3Ω1 − Ω2(Ω3 + Ω1) + θ2

Ω̇3 = Ω1Ω2 − Ω3(Ω1 + Ω2)− θφ
θ̇ = − (θ + φ) Ω3 − (θ − φ) Ω2

φ̇ = − (θ + φ) Ω3 + (θ − φ) Ω1

(3.3.2.12)

which was introduced in [100]. We refer to system (3.3.2.12) as the DH-V system and will
construct its solution based on the method discussed in Section 3.1. Due to the special block
structure of M , its symmetric part Ms can be diagonalized by an orthogonal matrix of the
form

P =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 (3.3.2.13)

where γ = γ(t) is a complex function to be determined. That is, Ms = PdP−1 with d as in
(3.3.2.8). Furthermore, the skew-symmetric part Ma commutes with the P above so that

a = P−1MaP = Ma =

 0 τ3 0
−τ3 0 0

0 0 0

 ⇒ τ3 =
1

2
(θ − φ) (3.3.2.14)

Since τ1 = τ2 = 0 for the DH-V case, we have τ 2 = τ 2
3 in (3.3.1.1) which is now solved via the

Schwarzian equation (3.3.1.9) with α1 = α2 = 0. Moreover, using (3.3.2.10) and (3.3.1.7),
one obtains

τ3 = α3

√
x1x2 = ±iα3

2

ṡ√
s(s− 1)

. (3.3.2.15)

Then the first equation in (3.3.2.9),

Ṗ = −Pa ⇒ γ̇ = τ3 ,

which can be solved in terms of s(t) as

γ(s(t)) = ±iα3 log
(√

s−
√
s− 1

)
+ γ0 , (3.3.2.16)

where γ0 is a (complex) constant. Hence the DH-V matrix M can be reconstructed in terms
of the matrices P, d and a as follows:

Ω1 + Ω2 =ω1 + ω2 , Ω1 − Ω2 = (ω1 − ω2) cos 2γ , Ω3 = ω3 ,

θ + φ = (ω2 − ω1) sin 2γ , θ − φ = 2τ3 ,
(3.3.2.17)

where ωi are given by (3.3.1.8), and τ3, γ are given by equations (3.3.2.15) and (3.3.2.16),
respectively. Equation (3.3.2.17) gives the complete solution of the DH-V system in terms
of the solution s(t) of Schwarzian equation (3.3.1.9) with α1 = α2 = 0.

It is also possible to express the constraint Q introduced in Section 2.1 in terms of the
DH-V matrix elements. Indeed, one can calculate from (3.3.2.17)

ω1 =
1

2
(Σ + ∆) , ω2 =

1

2
(Σ−∆) , ω3 = Ω3 ,

Σ := Ω1 + Ω2 , ∆ := ±
√

(Ω1 − Ω2)2 + (θ + φ)2 .

(3.3.2.18)
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Substituting these expressions into the definition of Q, yields

Q :=
ω2

1

x2x3

+
ω2

2

x3x1

+
ω2

3

x1x2

=
1
4

(Σ + ∆)2 (1
2
(Σ−∆)− Ω3

)
− 1

4
(Σ−∆)2 (1

2
(Σ + ∆)− Ω3

)
+ Ω2

3∆

∆
(
Ω3 − 1

2
(Σ + ∆)

) (
1
2
(Σ−∆)− Ω3

) = −1

after some simplification.

3.3.3 Lax pair and Hamiltonian for the constrained gDH system

In this subsection we derive a Lax pair for the reduced non-homogeneous system (3.3.1.13)

for the ̂
regarded as a constrained Hamiltonian system in the phase space of the variables Ŵi.

Lax equation

Specifically, we find 3×3 matrices U and V such that (3.3.1.13) is equivalent to the following
matrix Lax equation

U ′ + [U, V ] = 0 ,

where recall that “prime” denotes d
ds

. Let us choose U and V in the Lie algebra so(1, 2) as
follows:

U =

 0 Ŵ3 Ŵ2

Ŵ3 0 Ŵ1

Ŵ2 −Ŵ1 0

 , V =

 0 v3 v2

v3 0 v1

v2 −v1 0

 , (3.3.3.1)

where the vi are to be determined. The commutator [U, V ] is also in so(2, 1) and its entries
should be equal to the right hand side of (3.3.1.13), which we denote by ri, i = 1, 2, 3. This
results in the following linear system

Bv = r , B =

 0 −Ŵ3 Ŵ2

−Ŵ3 0 Ŵ1

Ŵ2 −Ŵ1 0

 , v = [v1, v2, v3]T , r = [r1, r2, r3]T .

(3.3.3.2)
for the vector v. Note that the matrix B is singular. In order for the linear system (3.3.3.2) to
have a consistent solution, the vector r must be orthogonal to the null space of BT by Fred-
holm’s alternative. The null space of BT is spanned by the vector N̂ = [Ŵ1,−Ŵ2,−Ŵ3]T .

Therefore, one must have N̂ ·r = Ŵ1r1−Ŵ2r2−Ŵ3r3 = 0, which is readily verified from the
calculations following (3.3.1.13). Thus, the linear system (3.3.3.2) admits infinitely many so-

lutions (defined modulo the homogeneous solution spanned by the null vector [Ŵ1, Ŵ2, Ŵ3]T

of B). A particular choice for the vector v is given by

v1 = 0 , v2 = − r3

Ŵ1

= −

(
Ŵ2

s(s− 1)
+

f(s)

Ŵ1

√
s(s− 1)

)
, v3 =

r2

Ŵ1

=

(
Ŵ3

s
+

f(s)

Ŵ1

√
s

)
,

which then yields the matrix V in the Lax pair.
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In a general setting, the Lax equation U ′ + [U, V ] = 0 is useful to generate a sequence
of conserved quantities TrUn, n = 1, 2, . . .. Indeed, by differentiating with respect to s one
obtains (

TrUn
)′

= nTr
(
Un−1[V, U ]

)
= nTr

(
V [U,Un−1]

)
= 0 .

These conserved quantities are related to the symmetric functions of the eigenvalues of of the
matrix U . In the present case, the eigenvalues of U are simply given by λ = 0,±

√
−γ = 0,±1

2

since γ = 1
4
Q = −1

4
. In fact, one obtains TrU = 0,TrU2 = −2γ, and the remaining traces

which are polynomials in γ can be calculated by applying the Caley-Hamilton theorem.
It is worth pointing out that (3.3.1.5) for the Wi also admits a Lax pair. Here, one

chooses so(3)-valued 3× 3 matrices

L =

 0 W3 −W2

−W3 0 W1

W2 −W1 0

 , A =

 0 A3 −A2

−A3 0 A1

A2 −A1 0

 , (3.3.3.3)

where the Wi(t) are defined in (3.3.1.4) and the A(t) are to be determined such that the Lax
equation L̇+ [L,A] = 0 is equivalent to the system (3.3.1.5). The matrix A can be found by
proceeding in a similar fashion as outlined above. One finds that a particular choice for the
matrix elements of A is given by

A1 = 0 , A2 = x3W2 +
τ 2

W1
√
x1x2

, A3 = −
(
x2W3 +

τ 2

W1
√
x1x3

)
.

The eigenvalues of L is given by λ = 0,±
√
−Q = 0,±1. Consequently, TrLn, n = 1, 2, . . .

are polynomials in Q.

Hamiltonian formulation

Equations (3.3.1.13) can be also regarded as a constrained Hamiltonian system in the phase

space of the variables Ŵi satisfying the constraints in (3.3.1.14). The phase space is endowed
with a natural Poisson structure inherited from the Lie-Poisson structure defined on the
dual space of the Lie algebra so(1, 2) used to construct the Lax pair. Explicitly, the Poisson
structure is given by the fundamental Poisson bracket relations

{Ŵ1, Ŵ2} = Ŵ3 , {Ŵ2, Ŵ3} = −Ŵ1 , {Ŵ3, Ŵ1} = Ŵ2 . (3.3.3.4)

In general, the Poisson bracket of any two continuously differentiable functions f and g on
the phase space, is given by

{f, g} = J(df, dg) =
3∑

i,j,k=1

Ck
ijŴk

∂f

∂Ŵi

∂f

∂Ŵj

,

where Ck
ij are the structure constants for the Lie algebra so(1, 2). The Poisson tensor Jij :=

3∑
k=1

Ck
ijŴk is degenerate on the three-dimensional phase space, and admits a Casimir function

constructed from the Lax matrix U as follows

C = −1

2
TrU2 = Ŵ1

2
− Ŵ2

2
− Ŵ3

2
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such that J(·, dC) = 0. In other words, {f, C} = 0 for any smooth function f on the
phase space. Note from (3.3.1.14) that C + 1

4
= 0 is one of the constraints, while the other

constraint is given by l = 0, where

l = −1

2
TrUS =

Ŵ1√
s− 1

+
Ŵ2√
s

+
Ŵ3√
s(s− 1)

S =

 0 (s(s− 1))−1/2 s−1/2

(s(s− 1))−1/2 0 (s− 1)−1/2

s−1/2 −(s− 1)−1/2 0

 .

Next, we introduce a Hamiltonian function on the phase space by

H = −1

2
Tr(UIU − 4cf(s)US) =

1

2

(
Ŵ1

2

s− 1
− Ŵ2

2

s
− (2s− 1)Ŵ 2

3

s(s− 1)

)
− 4cf(s)l , (3.3.3.5)

where I = diag(s−1, (s − 1)−1, 0), l is defined above, c = ±1
2
, and f(s) is defined in

(3.3.1.13). With the fundamental Poisson brackets given by (3.3.3.4), the reduced gDH
equations (3.3.1.13) can be expressed by the following equation of motions together with the
constraints

˙̂
Wi = {Ŵi, H} , C +

1

4
= 0 , l = 0 , (3.3.3.6)

where the Hamiltonian H is given by (3.3.3.5). The equations of of motions obtained from
(3.3.3.6) determines the equations in (3.3.1.13) after applying the constraints. For example,
one can compute using (3.3.3.4) that

{Ŵ1, H} =
Ŵ2Ŵ3

s− 1
− 4cf(s)

(
Ŵ2√
s(s− 1)

− Ŵ3√
s

)
.

Upon applying the constraints, one can replace Ŵ3 in the second term above by its expression
from (3.3.1.15) to obtain the first equation in (3.3.1.13). The remaining equations in (3.3.3.6)
lead to the corresponding equations in (3.3.1.13) in a similar fashion.

For consistency, it also needs to be checked that the constraints are satisfied by the
Hamiltonian dynamics. In other words, one should have modulo the constraints

dC

ds
= {C,H} = 0 ,

dl

ds
=
∂l

∂s
+ {l, H} = 0 .

The first consistency condition is obviously satisfied since C is a Casimir function, the second
one can also be verified by using (3.3.1.15) and after some straightforward computations.

3.4 Bianchi-IX, Darboux-Halphen and Chazy-Ramanujan

1 Following applications to homogeneous cosmology, M4 spaces topologically equivalent to
R ×M3 of Bianchi type have been extensively explored. For a pedagogical introduction

1Near the completion of the article related to this work, the paper [101] appeared on arXiv. The authors,
among other things, also address the question of arithmetics and integrability of Bianchi IX gravitational
instantons, which have been explored by imposing the self-duality condition on triaxial Bianchi IX metrics
and by employing a time-dependent conformal factor. We comment more about this in the final section at
the end of the paper.
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to various cosmological models look at the Lecture Notes by Ellis et. al.[102]. Out of all
Bianchi type models of classes I - IX with vanishing cosmological constant, only Bianchi-IX
has been found to exhibit a relationship with quasimodular forms [103, 104]. Modular forms
in physics are a consequence of duality properties, resulting either from an invariance or a
relationship between two distinct theories. In the past 30 years, modular and quasimodular
forms have emerged mostly in the study of gravity and string theory [105]. Furthermore, we
must note that the Bianchi-IX model is a controversial system (possessing both integrable
and non-integrable aspects).

Various authors debated their doubts over statements about the chaotic nature of Bianchi-
IX dynamics, simultaneously expressing their opinion that the model might be a classical
integrable system (in Liouville sense) [106]. Thus, the Bianchi-IX cosmological model is good
for testing theories in order to understand various concepts of integrability.

The generalized Darboux-Halphen system has been heavily studied over the recent years,
the relationship between its classical form and the Bianchi-IX metric being established in the
90s. This connection proves useful in constructing various interesting Bianchi IX solutions
[107] or their applications e.g. in the study of scattering of SU(2) BPS monopoles [64, 108].
The Darboux-Halphen system also exhibits Ricci flow that describes the evolution of SU(2)-
homogeneous 3D geometries and can be seen as reflection of hidden symmetrry of hyperbolic
monopole motion [109].

The Darboux-Halphen differential equations, often called the classical Darboux-Halphen
(DH) system

ω̇i = ωjωk − ωi (ωj + ωk) , i 6= j 6= k = 1, 2, 3, cyclic , ẏ :=
dy

dt
, (3.4.1)

was originally formulated by Darboux [110] and subsequently solved by Halphen [111]. The
general solution to equation (3.4.1) may be expressed in terms of the elliptic modular func-
tion. In fact Halphen related the DH equation with the null theta functions.

The system (3.4.1) has found applications in mathematical physics in relation to magnetic
monopole dynamics [112], self dual Einstein equations [113, 97], topological field theory [114]
and reduction of self-dual Yang-Mills (SDYM) equations [115]. Recently in [116], the DH
system was reviewed from the perspective of the self-dual Bianchi-IX metric and the SDYM
field equations, describing a gravitational instanton in the former case, and a Yang-Mills
instanton in the latter. All systems related to the DH system such as Ramanujan and
Ramamani system were covered, as well as aspects of integrability of the DH system.

The Bianchi-IX metric is a general setup for 4D Euclidean spherically symmetric metrics.
Under certain settings of its curvature-wise anti-self-dual case, becomes the Taub-NUT.
Naturally, the analysis of its connection and curvature follows the same way as in [117, 37].

3.4.1 Geometric analysis

The Bianchi-IX metric is written as:

ds2 = [c1(r)c2(r)c3(r)]2 dr2 + c2
1(r)σ2

1 + c2
2(r)σ2

2 + c2
3(r)σ2

3 (3.4.1.1)

where the variables σi obey the structure equation:

dσi = −εijk σj ∧ σk where σi = − 1

r2
ηiµνx

µdxν (3.4.1.2)
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and i, j, k are permutations of the indices 1, 2, 3, with the t’Hooft symbols defined by Ap-
pendix 6.1.

Those solutions that are (anti-) self-dual fall into 2 categories:

1. connection wise self-dual

2. curvature wise self-dual

We shall now uncover the systems characterizing each category respectively.

Connection wise self duality - the Lagrange system

First we shall compute the spin connections of (3.4.1.1) from the tetrads [37]. We can list
the tetrads of (3.4.1.1) as:

e0 = c0(r)dr ei = ci(r)σ
i, where c0(r) = c1(r)c2(r)c3(r), i = 1, 2, 3. (3.4.1.3)

Obviously, e0 produces no connections (de0 = 0). However, for the remaining three, under
torsion-free condition the 1st Cartan structure equation (dei = −ωij∧ej) from (3.4.1.3) gives
us the following spin connections:

dei = −∂rci
c0

σi ∧ e0 −
{
−εijk

c2
i + c2

j − c2
k

2cicj
σk ∧ ej − εikj

c2
i + c2

k − c2
j

2cick
σj ∧ ek

}
,

ωi0 =
∂rci
c0

σi ωij = −εijk
c2
i + c2

j − c2
k

2cicj
σk (3.4.1.4)

This elaborate form for the components of the spin connections make its anti-symmetric
nature evident. If we only consider (anti-) self-dual cases of (3.4.1.4), we will have:

ω0i = ±1

2
ε0i

jkωjk = ±ωjk ⇒ 2
∂rci
ci

= ∓εjki
(
c2
j + c2

k − c2
i

)
.

∴ ∂r
(
ln c2

i

)
= ∓εjki

(
c2
j + c2

k − c2
i

)
(3.4.1.5)

One may suppose that we must parameterize the LHS to match the linear form of the RHS
in the equation above. From (3.4.1.5), we can see that c2

i must be parameterized such that

∂r
(
ln c2

j + ln c2
k

)
= ∓2c2

i ≡ 2∂r (ln Ωi) ⇒ ∓c2
i ≡ ∂r (ln Ωi) , (3.4.1.6)

which being applied back into the RHS of (3.4.1.5) leads us to:

ln c2
i = ln Ωj + ln Ωk − ln Ωi = ln

(
ΩjΩk

Ωi

)
,

∴ (ci)
2 =

ΩjΩk

Ωi

⇒ Ωi = cjck. (3.4.1.7)

which enable us to decouple the individual parameters into their own equations turning into
simpler expressions. Applying (3.4.1.7) to (3.4.1.6) allows us to write:

Ω̇i

Ωi

= ∓ΩjΩk

Ωi

⇒ Ω̇i = ∓ΩjΩk (3.4.1.8)

where throughout derivative (denoted by dot) is taken with respect to r.
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Figure 3.1: The Eüler Top mechanism

Curvature wise self-duality - Classical Darboux-Halphen system

Since we have already covered connection-wise self duality, let us explore a stronger version
known as curvature-wise self-duality. This emphasizes and expands upon the property of
self-duality, generalizing it beyond connection 1-forms. This means that curvature-wise self-
duality does not invalidate, rather implies connection-wise self-duality [118], and hence part
of the dynamical system derived from this should have the same form as the Lagrange system.

The Cartan-structure equation for Riemann curvature is

Rij = dωij + ωim ∧ ωmj (3.4.1.9)

The (anti-) self-duality of curvature demands that

R0i = ±1

2
ε0i

jkRjk = ±Rjk (3.4.1.10)

Now, for the LHS and RHS of (3.4.1.10), we have for i 6= j 6= k 6= 0

LHS R0i = dω0i + ω0j ∧ ωj i + ω0k ∧ ωki (3.4.1.11)

RHS Rjk = dωjk + ωj0 ∧ ω0
k + ωji ∧ ωik,

= dωjk − ω0j ∧ ω0
k − ωji ∧ ωki (3.4.1.12)

Using the (anti-) self-duality of the connection forms, as employed in the previous subsection,

ωij = ±1

2
εij

k0ωk0 = ∓ωk0 ⇒ ωji ± ω0k = 0 (3.4.1.13)

we shall be able to eliminate some of the later terms of (3.4.1.11) and (3.4.1.12) in (3.4.1.10),
since

R0i = ±Rjk ⇒ R0i ∓Rjk = 0,

⇒ dω0i ∓ dωjk + ω0j ∧
(
ωj i ± ω0

k

)︸ ︷︷ ︸
0

+ (ω0k ± ωji)︸ ︷︷ ︸
0

∧ωki = 0.
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dω0i = ±dωjk (3.4.1.14)

This leaves us with the equation shown below and its solution that follows, adapted from
before applying (3.4.1.2) and (3.4.1.4) into (3.4.1.14), remembering that c0 = cicjck.

∂r

(
∂rci
c0

)
dr ∧ σi +

∂rci
c0

dσi = ∓∂r
(
c2
j + c2

k − c2
i

2cjck

)
dr ∧ σi ∓

c2
j + c2

k − c2
i

2cjck
dσi,

⇒ ∂r

(
∂rci
c0

)
= ∓∂r

(
c2
j + c2

k − c2
i

2cjck

)
⇒ ∂rci

c0

= ∓εjki
c2
j + c2

k − c2
i

2cjck
+ λjk,

⇒ 2∂r (ln ci) = ∓
(
c2
j + c2

k − c2
i

)
+ 2λjkcjck, (3.4.1.15)

where λjk = λkj. Thus, starting from (3.4.1.15) as before, we can parameterize as follows:

∂r (ln cj + ln ck) = ∓c2
i + ci (λijcj + λikck) ≡ ∂r (ln Ωi) . (3.4.1.16)

Applying the parametrization (3.4.1.16) back into (3.4.1.15), we get (3.4.1.7) all over again:

∂r
[
ln(ci)

2
]

=
[
∓c2

j + cj (λjkck + λjici)
]︸ ︷︷ ︸

∂r(ln Ωj)

+
[
∓c2

k + ck (λkici + λkjcj)
]︸ ︷︷ ︸

∂r(ln Ωk)

−
[
∓c2

i + ci (λijcj + λikck)
]︸ ︷︷ ︸

∂r(ln Ωi)

,

(ci)
2 =

ΩjΩk

Ωi

⇒ Ωi = cjck.

Applying this parametrization to (3.4.1.16) will now give us

∂r (ln Ωi) = ∓ΩjΩk

Ωi

+ λijΩk + λikΩj,

⇒ Ω̇k = ∓ΩiΩj + λjkΩkΩi + λikΩkΩj (3.4.1.17)

where setting λij = −1 ∀ i, j in (3.4.1.17) for anti-self-duality proceeds to give us the
classical Darboux-Halphen system

∴ Ω̇k = ΩiΩj − Ωk (Ωi + Ωj) (3.4.1.18)

Thus, we can see that the curvature-wise self-duality extends upon the characteristic system
of the connection-wise self-duality, making the Darboux-Halphen system a suitable candidate
for further development beyond the Lagrange system. Clearly, the first term has included the
dynamical aspect of the Lagrange system, as the property of self-duality of the connection
1-forms being preserved, aside from an additive constant involved and was extended to their
exterior derivatives. Needless to say, connection-wise self-duality must precede curvature-
wise self-duality, and the latter is not possible without ensuring the former.

Self-dual curvature components

So far, we have managed to study a great deal about the Bianchi-IX geometry, without
confronting the work of extracting the curvature components. Here, we will proceed to do
exactly that, using the imposed (anti-) self duality properties at our disposal to make our
job easier. But first, we shall prove and later in this case confirm that all curvature-wise
self-dual manifolds are Ricci-flat.

73



We recall from [117] that the Riemann curvature tensor for (anti-)self-dual metrics on the
vierbein space can be written as:

Rabcd = Gij(~x)η
(±)i
ab η

(±)j
cd i, j = 1, 2, 3; a, b, c, d = 0, 1, 2, 3 (3.4.1.19)

This means the Ricci tensor for Euclidean vierbein space is given by

Rac = δbdRabcd = δbdGij(~x)ηiabη
j
cd = Gij(~x)δijδac =

(
Tr [G(~x)]

)
δac (3.4.1.20)

Clearly, the above result implies that the Ricci tensor has only diagonal elements, which
allows us to demonstrate that

Raa = Rabab +Racac +Radad
self-duality−−−−−−→ ± (Rabcd +Racdb +Radbc)

Bianchi identity−−−−−−−−−→ 0,

∴ Raa = 0 ⇒ Tr [G(~x)] = 0 (3.4.1.21)

Showing that curvature-wise self-dual manifolds are undoubtedly Ricci-flat.

Self-duality =⇒ Ricci-flatness .

Returning to the original co-ordinates, we have:

Rac =
(
Gij(~x)δij

) (
δace

a
µe
c
ν

)
= Tr [G(~x)] gµν(~x) (3.4.1.22)

But, for a more thorough analysis, it would be better to directly obtain all the curvature
components for detailed examination. This can be easily done as we already have the general
formula for all the connection components. The results are made easier by keeping the self-
duality of the connection forms (3.4.1.13) in mind.

R0i = dω0i + ω0j ∧ ωji + ω0k ∧ ωki
= dω0i + ω0j ∧ ω0k − ω0k ∧ ω0j = dω0i + 2ω0j ∧ ω0k

∴ R0i =
1

c0ci

(
c′i
c0

)′
︸ ︷︷ ︸

R0i0i

e0 ∧ ei − 1

cjck

[
c′i
c0

− 2

(
c′j
)

(c′k)

c2
0

]
︸ ︷︷ ︸

−R0ijk

ej ∧ ek (3.4.1.23)

Now curvature wise anti-self-duality means

R0i0i = −R0ijk = −Rjk0i = Rjkjk (3.4.1.24)

Demanding curvature wise anti-self-duality gives us the differential equation

1

c0ci

(
c′i
c0

)′
=

1

cjck

[
c′i
c0

− 2

(
c′j
)

(c′k)

c2
0

]
(3.4.1.25)

Since we have connection wise anti-self-duality rule (3.4.1.5), we can say

R0i =
εijk
c0ci

(
c2
j + c2

k − c2
i

2cjck

)′
e0 ∧ ei − εijk

cjck

[
c2
j + c2

k − c2
i

2cjck
− 2

(
c2
k + c2

i − c2
j

2ckci

)(
c2
i + c2

j − c2
k

2cicj

)]
ej ∧ ek

∴ R0i =
εijk
c0ci

(
c2
j + c2

k − c2
i

2cjck

)′
︸ ︷︷ ︸

R0i0i

e0 ∧ ei − εijk
c2
i

(
c2
j + c2

k − c2
i

)
− c4

i +
(
c2
j − c2

k

)2

2c2
0︸ ︷︷ ︸

−R0ijk

ej ∧ ek

(3.4.1.26)
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Due to curvature wise anti-self-duality being considered, we should have:

R0i0i = −R0ijk = εijk

(
c2
i + c2

j + c2
k

) (
c2
j + c2

k

)
− 2c4

i − 4c2
jc

2
k

2c2
0

(3.4.1.27)

Thus, we can say that the curvature 2-form is given by

Rab =
3∑
i=1

εijk

(
c2
i + c2

j + c2
k

) (
c2
j + c2

k

)
− 2c4

i − 4c2
jc

2
k

2c2
0

η̄iabη̄
i
cde

c ∧ ed (3.4.1.28)

which on comparison with (3.4.1.19) tells us that

Gil(~x) = εijk

(
c2
i + c2

j + c2
k

) (
c2
j + c2

k

)
− 2c4

i − 4c2
jc

2
k

2c2
0

δil (3.4.1.29)

Tr [G] =
2
(
c2
i + c2

j + c2
k

)2 − 2
(
c2
i + c2

j + c2
k

)2

2c2
0

= 0 (3.4.1.30)

Thus, the Ricci tensor, and consequently scalar on vierbein space is given by

Rab = 0, R = 0 (3.4.1.31)

confirming what was already proven previously.

Non-existence of a metric for the generalized system

Naturally, one can suspect that the classical Darboux-Halphen system and consequently the
Bianchi-IX metric is the result of setting τi = 0 in (3.3.1.1). For the classical system, we
should have the metric co-efficients given by the diagonal matrix

hclass =



Ω1Ω2Ω3 0 0 0

0
Ω2Ω3

Ω1

0 0

0 0
Ω3Ω1

Ω2

0

0 0 0
Ω1Ω2

Ω3


(3.4.1.32)

Now, we notice that the matrix describing the metric h can be given by

hclass = M−1
class Adj (Mclass) where Mclass =


1 0 0 0
0 Ω1 0 0
0 0 Ω2 0
0 0 0 Ω3

 (3.4.1.33)

where Mclass is the matrix that produces the classical Darboux-Halphen system. With this
in mind, we see that the generalized Darboux-Halphen system (3.3.1.1) seems to arise from
a matrix Mgen given as

Mgen =


1 0 0 0
0 Ω1 τ3 −τ2

0 −τ3 Ω2 τ1

0 τ2 −τ1 Ω3

 (3.4.1.34)
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However, there are not always a vierbeins or metric counterparts for gauge fields, as there
are for curvature and connection components. This shall be elaborated further as follows.

The torsion-free form of the 1st Cartan structure equation is

dei = −ωij ∧ ej (3.4.1.35)

Further examination reveals that

∂µe
i
ν dx

µ ∧ dxν = −ωiµjejν dxµ ∧ dxν ,

∴ Ej
ν∂µe

i
ν = −ωiµj (3.4.1.36)

Recalling that the spin connections can be expanded as shown below, we can say that

ωij = η
(+)a
ij A(+)a + η

(−)a
ij A(−)a A(±)a = A(±)a

µ dxµ,

∴ Ej
ν∂µe

i
ν = −

[
η

(+)a
ij A(+)a

µ + η
(−)a
ij A(−)a

µ

]
.

Now, we can obtain the individual SU(2)± gauge potential function components A
(±)
µ in

terms of the vierbein components as follows

A(±)a
µ = −1

4
η(±)aEj

ν∂µe
i
ν (3.4.1.37)

Thus, if we start with a metric or equivalently the vierbeins, we should be able to get the
spin-connections and hence gauge fields, and from there go backwards, however, the opposite
is not always possible.

Since the generalized Darboux-Halphen system is primarily a product of the reduction of
the SDYM gauge fields, it may not always be possible to find a metric or its vierbeins that
are related to it. The classical Darboux-Halphen system is a special case where τi = 0 ∀ i,
for which we have the self-dual Bianchi-IX metric (gravitational instanton).

3.4.2 Aspects of Flow equations

Geometric flows describe the evolution of a metric on a Riemannian manifold along the path
parameter, under a general non-linear equation, given a symmetric tensor Sij [119, 120].
Usually, a system that exhibits geometric flows satisfies the equation

dgij
dτ

= Sij (3.4.2.1)

where Sij is symmetric. Some systems exhibit a particular category of such flows known
as Ricci flow for which Sij = −Rij. Such systems that describe Ricci flows do not preserve
volume elements, which are described by the equation:

dgij
dτ

= −Rij (3.4.2.2)

The Ricci flow equation introduced by Richard Hamilton in 1982 was a primary tool in
Grigory Perelman’s proof of Thurston’s geometrization conjecture, Poincare conjecture being
a special case of that. Ricci flow exhibits many similarities with the heat equation: it gives

76



manifolds more uniform geometry and smooths out irregularities and has proven to be a very
useful tool in understanding the topology of arbitrary Riemannian manifolds.

Now, we have already shown that Darboux-Halphen systems are Ricci-flat which means
that it is a fixed point of the Ricci flow, usually exhibited by gravitational instantons which
are extremal points of the Euclidean Einstein-Hilbert action [121]. Looking at the Darboux-
Halphen equations, we can see that for the Bianchi-IX metric

d (c2
i )

dτ
= c2

i

(
c2
j + c2

k − c2
i − 2cjck

)
= c2

i

[
(cj − ck)2 − c2

i

]
,

d (c2
0)

dτ
=
d

dτ
(c1c2c3)2 = c2

0

{
c2
i + c2

j + c2
k − 2 (cicj + cjck + ckci)

}
.

Thus, we have the following equations:

d (c2
0)

dτ
= c2

0(~x)
[
c2
i + c2

j + c2
k − 2 (cicj + cjck + ckci)

]
d (c2

i )

dτ
= c2

i (~x)
[
(cj − ck)2 − c2

i

] (3.4.2.3)

Now if we set c0 = 1 for the co-ordinate rescaling dt = c0(~x) dr, then we should get

c2
i + c2

j + c2
k = 2 (cicj + cjck + ckci)

2
dci
dτ

=
1

cjck

[
(cj − ck)2 − c2

i

] (3.4.2.4)

which matches and re-confirms the results obtained in [120] where the Ricci tensor for such
Bianchi-IX geometry is given by the RHS of the above equation, showing that it does exhibit
Ricci flow. For a more general Darboux-Halphen system, the result would be of the form:

d (c2
i )

dτ
= c2

i

[
c2
j + c2

k − c2
i − 2 (βij cicj + βjk cjck + βki ckci)

]
.

where 2βij = λjk − λik, 2βjk = λji + λki, 2βki = λkj − λij

and
d (c2

0)

dτ
=
d

dτ
(c1c2c3)2 = c2

0(~x)
[
c2
i + c2

j + c2
k − 2 (αij cicj + αjk cjck + αki ckci)

]
.

where 2αij = λik + λjk, 2αjk = λji + λki, 2αki = λkj + λij

d (c2
0)

dτ
= c2

0(~x)
[
c2
i + c2

j + c2
k − 2 (αij cicj + αjk cjck + αki ckci)

]
d (c2

i )

dτ
= c2

i (~x)
[
c2
j + c2

k − c2
i − 2 (βij cicj + βjk cjck + βki ckci)

] (3.4.2.5)

Thus, Ricci flow is exhibited and implies a self-dual Bianchi-IX metric, otherwise known to
be the Darboux-Halphen system describing the evolution of SU(2) 3D geometries.

3.4.3 Other related systems

The Darboux-Halphen system has analogues and equivalents in various forms of quadratic
and non-linear differential equations. In this subsection, we will describe them in detail.
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Ramamani to Darboux-Halphen

The Ramamani system [122, 123] is described by the following differential equations

q
dP
dq

=
P2 −Q

4
, q

dP̃
dq

=
P̃P − Q

2
, q

dQ
dq

= PQ− P̃Q. (3.4.3.1)

In a recent paper Ablowitz et al. [124] showed that Ramamani’s system of differential
equations is equivalent to a third order scalar nonlinear ODE found by Bureau [125], whose
solutions are given implicitly by a Schwarzian triangle function. Under a suitable variable
transformation, the Ramamani system produces the classical Darboux-Halphen system.

The Ramamani system (3.4.3.1) for q =
1

2iπ
, is described by the equations

Ṗ =
iπ

2

(
P2 −Q

)
,

˙̃P = iπ
(
PP̃ − Q

)
, Q̇ = 2iπ

(
P − P̃

)
Q. (3.4.3.2)

We convert to Darboux-Halphen variables
(
P , P̃ ,Q

)
→ (X, Y, Z) [126] as follows

P =
2

iπ
X, P̃ =

1

iπ
(2X − Y − Z) , Q =

4

π2
(Z −X) (X − Y ) . (3.4.3.3)

Naturally, if we apply the above transformation to the Ramamani equations (3.4.3.2), we
shall get the classical Darboux-Halphen system equations.

Ṗ =
2

iπ
Ẋ =

iπ

2

{
− 4

π2
X2 − 4

π2

(
XY +XZ − Y Z −X2

)}
,

⇒ − 4

π2
Ẋ = − 4

π2
(XY +XZ − Y Z)

and hence, we get one Darboux-Halphen equation in the form

Ẋ = X (Y + Z)− Y Z (3.4.3.4)

For the others, the process is more elaborate although quite straightforward to show.

˙̃P =
1

iπ

(
2Ẋ − Ẏ − Ż

)
= iπ

{
− 4

π2
X2 +

2

π2
X (Y + Z)− 4

π2

(
XY +XZ − Y Z −X2

)}
⇒ − 1

π2

(
2Ẋ − Ẏ − Ż

)
=

2

π2

(
Ẋ + Y Z

)
− 4

π2
Ẋ

⇒ Ẏ + Ż = 2Y Z (3.4.3.5)

Q̇ =
4

π2

[(
Ż − Ẋ

)
(X − Y ) + (Z −X)

(
Ẋ − Ẏ

)]
=

8

π2
(Y + Z) (Z −X) (X − Y ) ,

⇒
(
Ż − Z2

)
(X − Y ) +

(
Y 2 − Ẏ

)
(Z −X) = 0.

Using (3.4.3.5), we have another DH equation

Ẏ = Y (Z +X)− ZX (3.4.3.6)

Naturally, using (3.4.3.5) again, we should get the final equation

Ż = Z (X + Y )−XY (3.4.3.7)
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Consequently, we have three sets of equations for the classical Darboux-Halphen system

Ẋ = X (Y + Z)− Y Z
Ẏ = Y (Z +X)− ZX
Ż = Z (X + Y )−XY

This is henceforth, another system related to the Ramanujan equations [127, 128] via the
focal point of classical DH systems they converge to. We must note that, the Ramamani
system gives rise to self dual (and not anti-self dual) Darboux-Halphen equations. Inverting
the sign of the Halphen variables gives the familiar anti-self-dual system.

The Chazy equation

Now, we shall see how the solution of the Darboux-Halphen system satisfies the Chazy
equation [129, 130]. Let us take the previous result for anti-self-duality and λij = −1, and
write it for all values of i, j, k

Ω̇1 = Ω2Ω3 − Ω1 (Ω2 + Ω3)

Ω̇2 = Ω3Ω1 − Ω2 (Ω3 + Ω1)

Ω̇3 = Ω1Ω2 − Ω3 (Ω1 + Ω2)

Adding up will give
Ω̇1 + Ω̇2 + Ω̇3 = − (Ω1Ω3 + Ω2Ω1 + Ω3Ω2) .

If we define y = −2 (Ω1 + Ω2 + Ω3), we will have

ẏ = 2 (Ω1Ω3 + Ω2Ω1 + Ω3Ω2) , ÿ = −12 Ω1Ω2Ω3.

Thus, the third order derivative will be

...
y = −12

[
{Ω2Ω3 − Ω1 (Ω2 + Ω3)}Ω2Ω3 + Ω1 {Ω3Ω1 − Ω2 (Ω3 + Ω1)}Ω3

+ Ω1Ω2 {Ω1Ω2 − Ω3 (Ω1 + Ω2)}
]

= 48 Ω1Ω2Ω3 (Ω1 + Ω2 + Ω3)− 12 (Ω2Ω3 + Ω3Ω1 + Ω1Ω2)2 = 2yÿ − 3ẏ2

Thus, we obtain the Chazy equation [129]

d3y

dt3
= 2y

d2y

dt2
− 3

(
dy

dt

)2

(3.4.3.8)

The Ramanujan equation

In case of the classical Chazy system, the Ramanujan equations [127, 128] are given by

Ṗ =
iπ

6

(
P 2 −Q

)
, Q̇ =

2iπ

3
(PQ−R) , Ṙ = iπ

(
PR−Q2

)
. (3.4.3.9)

To understand how they are related to the Chazy equation, we shall examine what they
imply systematically. From the first equation of (3.4.3.9), we find that

Q = P 2 − 6

iπ
Ṗ ⇒ Q = Q(P, Ṗ ) (3.4.3.10)
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Applying (3.4.3.10) to the second eq. of (3.4.3.9), we get

Q̇ = Q̇(P, Ṗ , P̈ ) = 2

(
PṖ − 3

iπ
P̈

)
,

⇒ R = R(P, Ṗ , P̈ ) = PQ− 3

2iπ
Q̇ = P 3 − 9

iπ
P Ṗ − 9

π2
P̈ (3.4.3.11)

Finally, using result (3.4.3.11) in the last equation of (3.4.3.9), we will get

Ṙ = iπ
(
PR−Q2

)
= 3P 2Ṗ − 9

iπ

(
Ṗ 2 + PP̈

)
− 9

π2

...
P ,

∴
...
P + iπ

(
3Ṗ 2 − 2PP̈

)
= 0.

However, we are not there yet. The final step requires us to take advantage of the non-

linearity of this equation and write P =
y

iπ
to arrive at

...
y = 2yÿ − 3ẏ2 (3.4.3.12)

This final result is the classical Chazy equation (3.4.3.8) we are familiar with.

Generalized Chazy System

If we start instead with the generalized Darboux-Halphen equations and set the co-efficients
as α1 = α2 = α3 = 2

n
, we will get the corresponding generalized Chazy equation [131].

d3y

dt3
− 2y

d2y

dt2
+ 3

dy

dt

2

=
4

36− n2

(
6
dy

dt
− y2

)2

(3.4.3.13)

The set of transformations that leads the Ramanujan equations to the above generalized
Chazy equation turn out to be:

Ṗ =
iπ

6

(
P 2 −Q

)
, Q̇ =

2iπ

3
(PQ−R) , Ṙ = iπ

[
PR−Q2

(
1− 36

36− n2

)]
(3.4.3.14)

The first two equations of (3.4.3.14) are the same as for (3.4.3.9), so the same steps will
follow as with (3.4.3.10) and (3.4.3.11), but for the last step, we will have

...
P + iπ

(
3Ṗ 2 − 2PP̈

)
=

4iπ

36− n2

(
P 2 − 6

iπ
Ṗ

)2

(3.4.3.15)

Applying the same variable redefinition P =
y

iπ
as before, we obtain

d3y

dt3
− 2y

d2y

dt2
+ 3

dy

dt

2

=
4

36− n2

(
6
dy

dt
− y2

)2

(3.4.3.16)

which is exactly the generalized Chazy equation described before.
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Figure 3.2: Venn-diagram of Quaternionic, Einstein Kähler, and Ricci-flat manifolds

3.4.4 Integrability of the Bianchi-IX

There are various impositions possible on a 4-dimensional Riemannian metric. It could be
Kähler or Einstein or even have an anti-self-dual (ASD) Weyl tensor. The venn-diagram
below depicts the various possibilities resulting to different field equations in 4-dimensions,
where the intersection zones correspond to interesting conditions.
If (e0, e1, e2, e3) define the vierbeins on a Riemannian 4-manifold, the basis of self-dual 2-
forms is given as

∗ ηi = ηi = ηiabe
a ∧ eb :


η1 = e0 ∧ e1 + e2 ∧ e3

η2 = e0 ∧ e2 + e3 ∧ e1

η3 = e0 ∧ e3 + e1 ∧ e2

(3.4.4.1)

Similarly, the anti-self-dual 2-form basis is given by

∗ η̄i = −η̄i = η̄iabe
a ∧ eb :


η̄1 = e0 ∧ e1 − e2 ∧ e3

η̄2 = e0 ∧ e2 − e3 ∧ e1

η̄3 = e0 ∧ e3 − e1 ∧ e2

(3.4.4.2)

If ωij are the self-dual parts spin connection 1-forms, then the first Cartan equation are

dηi = ωij ∧ ηj (3.4.4.3)

The curvature 2-form is given as usual by the 2nd Cartan structure equation (3.4.1.9). It is
possible to expand the curvature in terms of ηi and η̄i as

Rij = Wij
kηk + Φij

kη̄k (3.4.4.4)

where conditions imposed by various field equations determine the co-efficients Wijk & Φijk.

Conditions determining Wijk & Φijk

The 1st Bianchi identity Ri
j ∧ ηj = 0 implies Wijj = 0, further implying that Wijk has 6

independent components, out of which 5 correspond to the SD Weyl tensor and one to the
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totally anti-symmetric part corresponding to Ricci scalar. On the other hand, Φijk has 9
components corresponding to trace-free Ricci tensor.

1. Iff Wijk = Λεijk, where Λ is a multiple of Ricci scalar, we are in Set A ⇒ ASD Weyl.

2. Iff Wijk = Λεijk and Φijk = 0, then we have ASD Einstein (A ∩B).

3. Iff Wijk = 0 = Φijk, we are in (A ∩B ∩ C) which is hyper-Kähler.

Returning to the Bianchi-IX metric (3.4.1.1) and using the parametrization (3.4.1.7), it
can be written in terms of the basis (σ1, σ2, σ3) of left-invariant forms on SU(2) as

ds2 = [Ω1(r)Ω2(r)Ω3(r)] dr2 +
Ω2Ω3

Ω1

σ2
1 +

Ω3Ω1

Ω2

σ2
2 +

Ω1Ω2

Ω3

σ2
3 (3.4.4.5)

where Ωi,∀i = 1, 2, 3 are functions of r and σis satisfy Maurer Cartan equations. From this
form of the metric, the vierbeins can be used to produce the SD 2-forms:

ηi = ΩjΩk dr ∧ σi + Ωi σ
j ∧ σk i 6= j 6= k (3.4.4.6)

Thus, the connection forms ωij can be written in terms of arbitrary functions Ai(r), i = 1, 2, 3
such that

ω12 =
A3

Ω3

σ3 + (cyclic permutations) (3.4.4.7)

All Ai components are obtained from the system below:

Ω̇i = ΩjΩk − Ωi (Aj + Ak) i 6= j 6= k = 1, 2, 3 (3.4.4.8)

We will refer to this system as the first system for future reference.

With the help of Cartan calculus, one can find the curvature 2-forms in terms of deriva-
tives of Ais. With the specific choice of field equations from restricting ourselves to a specific
region of the diagram (indicated in the Venn diagram), we will obtain a second system of
1st order differential equations involving Ai.

If we choose regions outside the top circle, we typically get non-integrable equations.
Dancer and Strachan [132] already showed this for Einstein Kähler (B ∩ C), while Barrow
[133] showed the same thing for Einstein (Set B). However, field equations belonging to
the top circle A are integrable, as expected from the heuristic, yet concrete argument that
self-duality implies integrability. according to Mason [134].

Imposing the vanishing of ASD Weyl tensor and the scalar curvature ωij results in the
system of the equation widely known as Chazy system [108, 135]. This system has a long
history, having been studied and solved in the 19th century by Brioschi [136].

Ȧi = AjAk − Ai (Aj + Ak) i 6= j 6= k = 1, 2, 3 (3.4.4.9)

We shall now list the following features of the first and second systems:

i) If all Ai = 0, then the connection of ASD 2-forms are clearly flat and the metric
describes vacuum. This was found by Belinsky [137] and Eguchi-Hanson [138].

ii) If Ωi = Ai,∀ i, then the first and second systems of equations are identical, which is
precisely the Atiyah and Hitchin’s [112] case.
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iii) If one insists all Ais to be constant in r, then without any loss of generality, if two of
them necessarily vanish, then the remaining Ai 6= 0 can reduce the first system to a
special case of Painlevé-III [139]. Also, the form ηi is covariant constant in this case
so that one arrives at the Pederson-Poon scalar flat Kähler metric [140].

iv) There exists a significant conserved quantity

Q =
Ω2

1

(A1 − A2)(A1 − A3)
+

Ω2
2

(A2 − A1)(A2 − A3)
+

Ω2
3

(A3 − A1)(A3 − A2)
(3.4.4.10)

There is a covariance under fractional linear transformations in r [139], which means
that the solutions of the second system with A1 = A2 6= 0 is conformally related to the
Pederson-Poon case [140].

Now, for a general solution of the second system, we introduce a new dependent variable
x as per Brioschi [136]

x =
A1 − A2

A3 − A2

(3.4.4.11)

It is now straightforward to show that (3.4.4.9) reduces to the 3rd order ODE for x

...
x =

3

2

ẍ2

ẋ
− 1

2
(ẋ)3

(
1

x2
+

1

x(x− 1)
+

1

(x− 1)2

)
(3.4.4.12)

A remarkable fact is that this ODE is satisfied by the reciprocal of the elliptic modular
function. Now this elliptic modular function has a natural boundary in the r-plane, so the
Ai and hence Ωi have a natural boundary in the r-plane and the location of the boundary
depends on the constants of integration. This implies the self-duality equations are not
always equivalent to Painlevé property, and thus integrable.

Now we introduce new dependent variables ρi,∀i = 1, 2, 3 according to

Ω1 = ρ1
ẋ√

x(1− x)
Ω2 = ρ2

ẋ

x
√

(1− x)
Ω3 = ρ3

ẋ√
x(1− x)

(3.4.4.13)

and switch independent variable from r to x (ie. ẋ ≡ dx
dr

), so the first system becomes

dρ1

dx
=

ρ2ρ3

x(1− x)

dρ2

dx
=
ρ3ρ1

x

dρ3

dx
=

ρ1ρ2

(1− x)
(3.4.4.14)

This system is known to reduce to Painlevé VI with the first integral

γ =
1

2

(
ρ2

2 + ρ2
3 − ρ2

1

)
= const (3.4.4.15)

which is in fact the conserved quantity (3.4.4.10), with the new metric being

ds2 =
ρ1ρ2ρ3

x(1− x)
ẋ

[
dx2

x(1− x)
+

(σ1)2

ρ2
1

+
(1− x)(σ2)2

ρ2
2

+
x(σ3)2

ρ2
3

]
(3.4.4.16)

Now we shall solve the new version of the first system where we will try to form an equation
for ρ3 only. Due to the existence of the first integral γ, this will be second order equation.
To recognize it better, we introduce a new independent variable z, given as

x =
4
√
z

(1 +
√
z)

2 (3.4.4.17)
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a new dependent variable V given by

ρ3 =
z

V

dV

dz
− V

2(z − 1)
− 1

2
+

z

2V (z − 1)
(3.4.4.18)

It is not very tedious to show that V satisfies Painlevé-VI equations with parameters (α, β, γ, δ)
in the notation of [141] or (1

8
,−1

8
, γ, 1

2
(1 − 2γ)) in the notation of [108] . Thus, we see the

equation for the conformal factor

Θ =
ρ1ρ2ρ3

x(1− x)

dx

dt
(3.4.4.19)

has the Painlevé property, but it also contains the function x(τ) which has a natural bound-
ary. The choice of conformal factor is equivalent to a gauge choice to make the Ricci scalar
vanish.

Now we have found the general solution of the metric (3.4.4.5) inside the top circle of
the figure (the shaded region of A). Also note that ASD Bianchi-IX metrics are not always
diagonal in the chosen invariant basis of 1-forms. We can always adjust the conformal factor
Θ in order to make this ASD Bianchi type metric to become Einstein. This would constitute
a metric for the region A∩B, which are quaternionic Kähler type of metrics and are diagonal
in the basis.

The solution for the conformal factor was found in [142] with γ =
1

8
and writing down

the desired condition as a set of equations on Θ and finally solve it. After a little algebra

and once all the dusts get settled, we get Θ =
N

D2
, with

N = 2ρ1ρ2ρ3(4xρ1ρ2ρ3 + P )

P = x
(
ρ2

1 + ρ2
2

)
− (1− 4ρ2

3)
(
ρ2

2 − (1− x)ρ2
1

)
D = xρ1ρ2 + 2ρ3

(
ρ2

2 − (1− x)ρ2
1

) (3.4.4.20)

Since the equation for ρ3 is a 2nd order differential equation, the metric depends on two
arbitrary constants. Particularly it is worth mentioning that there exists ASD Einstein
metrics on S4, which with appropriate choices of field equations fill in the general left-
invariant metric on S3 similar to the case of a 4-dim hyperbolic metric that fills the round
metric on S3.

3.5 Taub-NUT as a Bertrand space-time with Mag-

netic Fields

The Taub-NUT [35] is an exact solution of Einstein’s equations, found by Abraham Huskel
Taub (1951), and extended to a larger manifold by E. Newman, T. Unti and L. Tamburino
(1963). It is a gravitational anti-instanton with corresponding SU(2) gauge fields, fre-
quently studied for its geodesics which approximately describe the motion of well separated
monopole-monopole interactions. As a dynamical system it exhibits spherically symmetry,
with geodesics admitting Kepler-type symmetry, implying first-integrals such as the angular
momentum and Runge-Lenz vectors respectively. Witten’s prescription [143] realized Taub-
NUT space as a hyper-Kahler quotient using T-duality. This construction has a natural
interpretation in terms of D-branes [144], serving as an important example in string theory.
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The Bertrand space-time metric, formulated by V. Perlick [38] is also spherically symmetric

ds2 = h(ρ)2dρ2 + ρ2
(
dθ2 + sin2 θ dφ2

)
− dt2

Γ(ρ)
, (3.5.1)

derived from Bertrand’s Theorem, describing stable and closed geodesics with periodic orbits.
Upon comparison, Euclidean Bertrand spaces and Taub-NUT spaces, appear quite similar
apart from magnetic monopole and dipole interaction of the Taub-NUT. This implies dy-
namical similarities, manifested through similar first-integrals characterizing their motion.
It also implies that Taub-NUT possibly exhibits Kepler-Hooke configuration duality.

Consequently, we try to find first-integrals similar to those associated with central-
force motion under potentials involved in Bertrand’s Theorem: the angular momentum and
Laplace-Runge-Lenz vector. Since we are interested in the dynamical aspects of Taub-NUT
spaces, our attention is directed toward geodesics and Killing tensors. Naturally, we will be
looking at Killing tensors affiliated with Runge-Lenz-like vector. They obey the equation:

∇(aKb1)b2...bn = 0. (3.5.2)

Such tensors are the Killing-Stäckel tensors which are symmetric under index permutation.
The Killing-Yano tensors are antisymmetric under index permutation, and their square gives
the Stäckel tensor, like the antisymmetric tensor whose square gives the Runge-Lenz-like
quantity as we shall see. Such Killing tensors exhibit quaternionic algebra, implying a
connection to Hyperkähler structures associated with the metric.

3.5.1 Conserved Quantities

In classical mechanics it is important to identify constants of motion called conserved quan-
tities or first-integrals of the system. In the theory of integrable systems, all first-integrals
are in involution or commute with each other within the Poisson Brackets, with at least one
integral definitely being available. Given a n+ 1-space-time metric with t as cyclic variable:

ds2 = gij(x)dxidxj + gtt(x)dt2 + 2git(x)dxidt,

parameterized as t = τ , we will have the Lagrangian and a conserved quantity q:

Lṫ=1 =
1

2

(
gij(x)ẋiẋj

)
+

1

2
gtt(x) + git(x)ẋi, q =

(
∂L

∂ṫ

)
ṫ=1

= gtt + gitẋ
i. (3.5.1.1)

The Hamiltonian is given by the Legendre transform H =
∑

k 6=t
∂L
∂ẋk

ẋk − L, so that:

H =
1

2
gij(x) (pi − git(x)) (pj − gjt(x))− 1

2
gtt(x), pi =

∂L

∂ẋi
. (3.5.1.2)

In Hamiltonian dynamics, a conserved quantity Q commutes with the Hamiltonian H, a first
integral resulting from time translation invariance, within the Poisson Brackets:

{Q,H} = 0. (3.5.1.3)

However, this prescription is not gauge covariant for systems with gauge interactions. To
better understand why, consider the following metric with scalar potential U(x):

ds2 = δijdx
idxj − 1 + 2U(x)

m
dt2,
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where t is cyclical. Under the parametrization t = τ , the Lagrangian, Hamiltonian and
Hamilton’s dynamical equations for particles in presence of scalar potentials is given by:

Lṫ=1 =
m

2
ẋ2 − U(x),

H =
1

2m
p2 + U(x) ⇒


ẋ =

∂H

∂p
=
p

m

ṗ = −∂H
∂x

= −∇U(x)
.

For this system without magnetic fields, the fundamental brackets are:{
xi, pj

}
= δij,

{
xi, xj

}
= {pi, pj} = 0.

Now, for charged particles in U(1) gauge fields from magnetic dipoles alone, without scalar
potential, the metric is:

ds2 = δijdx
idxj − 1

m

(
dt2 − 2Ak(x)dxkdt

)
,

so the corresponding Lagrangian and Hamiltonian for ṫ = 1 are given by:

Lṫ=1 =
1

2

(
mẋ2 − ṫ2 + 2A(x).ẋṫ

)
, q =

(
∂L

∂ṫ

)
ṫ=1

= 1−A(x).ẋ,

∴ H ≈ 1

2m
(p−A(x))2 .

For charged particles in the presence of magnetic monopole and dipole U(1) gauge fields
without scalar potential, the metric is:

ds2 = δijdx
idxj − 1

m

(
dt− Ak(x)dxk

)2
, (3.5.1.4)

so the corresponding Lagrangian and Hamiltonian for ṫ = 1 are given by:

Lṫ=1 =
1

2

[
mẋ2 − (1−A(x).ẋ)2] , q =

(
∂L

∂ṫ

)
ṫ=1

= 1−A(x).ẋ,

∴ H =
1

2m
(p− qA(x))2 .

Now let us consider a Kaluza-Klein modification of this space-time, such that we include
another cyclical co-ordinate ψ that is periodic along with magnetic field components coupled
with it. This would result in a 4 + 1 space-time from a 3 + 1 one given by:

ds2 = δijdx
idxj +

1

m

(
dψ + Ak(x)dxk

)2 − (1 + 2V (x)) dt2, (3.5.1.5)

so the Lagrangian and Hamiltonian for ṫ = 1, ignoring constant additive terms are:

L =
1

2

[
mẋ2 +

(
ψ̇ +A(x).ẋ

)2
]
− V (r), q =

∂L

∂ψ̇
= ψ̇ −A(x),

∴ H =
1

2m
(p− qA(x))2 + V (r).

(3.5.1.6)
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where q is a conserved charge. The corresponding Hamilton’s equations are:

ẋ =
∂H

∂p
=
p− qA
m

, ṗ = −∂H
∂x

=
q

m
(∇A) . (p− qA)−∇V. (3.5.1.7)

Since the potentials are gauge dependent (A → A +∇Λ), the momenta therefore must be
so as well (p→ p + q∇Λ). Then, we must write gauge invariant momenta and express the
Hamiltonian in its gauge invariant form.

H =
Π2

2
+ V (r), Π = p− qA. (3.5.1.8)

Any function and partial derivative operators in gauge invariant forms can be written as:

f(x,p) −→ f(x,Π)

∂

∂xi
−→ ∂Πj

∂xi
∂

∂Πj
+

∂

∂xi
= −q∂iAj

∂

∂Πj
+

∂

∂xi

∂

∂pi
−→ ∂Πj

∂pi
∂

∂Πj
+

∂

∂pi
=

∂

∂Πi
( No explicit dependence on p )

with which the fundamental brackets become:{
xi,Πj

}
= δij,

{
xi, xj

}
= 0, {Πi,Πj} = −qFij, (3.5.1.9)

where it is interesting to note that the new Poisson Brackets between the gauge covariant
momenta are non-zero, as opposed to the usual case. This is a classical analogue of Ricci-
identity (in the absence of torsion). We can furthermore redefine the Poisson Brackets as:

{f, g} =
∂f

∂x
· ∂g
∂Π
− ∂f

∂Π
· ∂g
∂x
− qFij

∂f

∂Π
· ∂g
∂Π

.

Now that we have redefined the Poisson Brackets to make Hamiltonian dynamics manifestly
gauge invariant in the modified bracket, we can proceed to analyze the conserved quantities
in a general gauge invariant form. This is done by the Holten Algorithm as shown in [145]
and [146] discussed later as we shall see.

A dynamical-systems description of Taub-NUT

The Euclidean Taub-NUT metric as shown in [35] is given by:

ds2 = f(r)
{
dr2 + r2

(
dθ2 + sin2 θ dφ2

)}
+ g(r) (dψ + cos θdφ)2 ,

where f(r) = 1 +
4M

r
, g(r) =

(4M)2

1 + 4M
r

.
(3.5.1.10)

For later reference, taking ds̃2 =
ds2

4M
we shall re-write the above metric into this form :

ds̃2 = V (r) δij dx
idxj + V −1(r) (dψ +A.dx)2 ,

where V (r) =
1

4M
+

1

r
, A.dx = cos θdφ.

(3.5.1.11)
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We now consider the geodesic flows of the generalized Taub-NUT metric given by (3.5.1.10),
for which we can compose the Lagrangian:

L =
1

2
f(r)

{
ṙ2 + r2

(
θ̇2 + sin2 θ φ̇2

)}
+

1

2
g(r)

(
ψ̇ + cos θφ̇

)2

. (3.5.1.12)

We can further re-write the Lagrangian (3.5.1.12) into 3-dimensional form with a potential,
as in (3.5.1.6), independent of the ψ as:

L =
1

2
f(r)|ẋ|2 +

1

2
g(r)

(
ψ̇ +A.ẋ

)2

− U(r),

where the momentum can be written as:

p =
∂L
∂ẋ

= f(r)ẋ+ qA, Π = f(r)ẋ = p− qA. (3.5.1.13)

Spaces with the metric (3.5.1.10) exhibit SU(2)×U(1) isometry group. Given that we have
at least 2 cyclical variables ψ and φ, we will have the following 4 Killing vectors given by:

D0 = ∂ψ,

D1 = − sinφ ∂θ − cosφ cot θ ∂φ +
cosφ

sin θ
∂ψ,

D2 = cosφ ∂θ − sinφ cot θ ∂φ +
sinφ

sin θ
∂ψ,

D3 = ∂φ.

where D0 commutes with all other killing vectors, while D1, D2, D3 exhibit the SU(2) Lie
algebra given by [Di, Dj] = −εijkDk. Since ψ is cyclic, we have a conserved quantity:

q =
∂L
∂ψ̇

= g(r)
(
ψ̇ + cos θ φ̇

)
= g(r)

(
ψ̇ +A.ẋ

)
= const, (3.5.1.14)

known as the relative electric charge. Using (3.5.1.13), the symplectic 2-form ω and energy
E for the Taub- NUT system in Cartesian co-ordinates are:

ω =
3∑
i=1

dΠi ∧ dxi =
3∑
i=1

d (pi − qAi(x)) ∧ dxi =
3∑
i=1

dpi ∧ dxi + q
∑
i,j

Fijdx
i ∧ dxj,

∴ ω =
1

2
(ω0 + qF (x))jk dx

j ∧dxk =
3∑
i=1

dpi∧dxi−
q

2r3

∑
i,j,k

εijkx
k dxi∧dxj, (3.5.1.15)

H =
|Π|2

2f(r)
+

q2

2g(r)
= E , Fij(x) = −

∑
k

εijk
xk

r3
. (3.5.1.16)

Consequently, the Hamilton’s equations are given by:

ẋ = {x,H}θ =
Π

f(r)
,

Π̇ = {Π,H}θ = α(r)
x

r
+

q

r3f(r)
x×Π−∇U(r),

where α(r) =
f ′(r)

2 (f(r))2

∣∣Π∣∣2 +
g′(r)

2 (g(r))2 .

(3.5.1.17)
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Using these equations, we find angular momentum in presence of magnetic fields to be:(
dx

dt
×Π + x× dΠ

dt

)
=

q

r3f(r)
[x× (x×Π)] = q

[
(x.ẋ)x

r3
− ẋ
r

]
= −q d

dt

(x
r

)
,

∴
d

dt

(
x×Π + q

x

r

)
= 0 ⇒ J = x×Π + q

x

r
. (3.5.1.18)

The cyclic variable allows reduction of the geodesic flow on T (R4 − {0}) to a system on
T (R3 − {0}). The reduced system’s rotational invariance implies it must have a conserved
energy, angular momentum and vector K analogous to the Laplace-Runge-Lenz vector:

H =
1

2

Π2

f(r)
+

(
1

2

q2

g(r)
+ U(r)

)
=

1

2

Π2

f(r)
+W (r), (3.5.1.19)

J = x×Π + q
x

r
, (3.5.1.20)

K =
1

2
Kµν ẋ

µẋν = Π× J +

(
q2

4m
− 4mE

)
x

r
. (3.5.1.21)

This concludes the detailing of conserved quantities of the Taub-NUT from a dynamical
systems perspective. Now we shall proceed to consider a systematic analytic process that
describes conserved quantities as power series expansions of momenta.

Holten Algorithm description

One way of analytically obtaining conserved quantities that are polynomials in momenta is
by writing them in a power series expansion involving the gauge invariant momenta:

Q = C(0)(r) + C
(1)
i (r)Πi +

1

2!
C

(2)
ij (r)ΠiΠj +

1

3!
C

(3)
ijk(r)ΠiΠjΠk + .... (3.5.1.22)

where all the coefficients of momenta power series are symmetric under index permutation.
Applying this to eq (3.5.1.3), we can obtain the relations for each coefficient by matching
the appropriate product series of momenta for both the terms.

{Q,H} =
∑
n

C(n)
{i}

∏
{i}

Πk,Πj

Πj +

C(n)
{i}

∏
{i}

Πk, V (r)


 = 0,

∴ ∇jC
(n)
{m}

∏
{m}

Πk = qC
(n+1)
{m}i

(
F ij + ∂jV (r)

) ∏
({m},k 6=i)

Πk (3.5.1.23)

The equations we will get up to the 3rd order setting C
(i)
{m} = 0 ∀ i ≥ 3 are:

order 0: 0 = C(1)
m ∂m (V (r))

order 1: ∇iC
(0) = qFijC

(1)
j + C

(2)
ij ∂j (V (r))

order 2: ∇iC
(1)
j +∇jC

(1)
i = q

(
FimC

(2)m
j + FjmC

(2)m
i

)
order 3: ∇iC

(2)
jk +∇kC

(2)
ij +∇jC

(2)
ki = 0

(3.5.1.24)

Now we will turn our attention to some familiar conserved quantities.
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Some basic Killing Tensors

Using the above relations for the various terms, we will now look at some familiar Killing
tensors that we have already studied in classical mechanics. (for details, see Appendix 6.2)

Angular Momentum

The conserved quantity that results from the 1st order term of the Holten series alone is:

Q(1) = C
(1)
i Πi = −gim(~x)εmjkθ

kxjΠi

⇒ L.θ = −
(
εijkΠ

ixj
)
θk = (x×Π) .θ

∴ L = x×Π (3.5.1.25)

This eventually becomes the conserved quantity known as the angular momentum.

Laplace-Runge-Lenz vector

On the other hand, the conserved quantity from the 2nd order term of the series alone is:

Q(2) =
1

2
C

(2)
ij ΠiΠj =

{∣∣Π∣∣2 (n.x)− (Π.x) (Π.n)
}

=
{∣∣Π∣∣2x− (Π.x) Π

}
.n = N .n.

∴ N =
{∣∣Π∣∣2x− (Π.x) Π

}
= Π× (x×Π) (3.5.1.26)

This quantity is a term contained in another conserved quantity known as the Laplace-
Runge-Lenz vector. Having found the two familiar types of conserved quantities, we can
now proceed to see what it looks like for the Taub-NUT metric.

Holten algorithm for Taub-NUT

Now, for the Taub-NUT metric, we have (3.5.1.19) giving the Hamiltonian. This can be
written in dimensionally reduced form as:

H =
1

2
|Π|2 + f(r)W (r), W (r) = U(r) +

q2

2h(r)
+
E
f(r)

− E .

From this Hamiltonian, after setting all higher orders C
(2)
ij = C

(3)
ijk = 0, we get the modified

1st and 2nd order equations to be the following:

order 1: ∂iC
(0) = qFijC

(1)j,

order 2: ∇iC
(1)
j +∇jC

(1)
i = 0.

(3.5.1.27)

The constraint equation of the 2nd order of (3.5.1.27) gives us:

C
(1)
i = gim(x)εmjkθ

jxk,

∂iC
(0) =

q

r3
εijk ε

j
nmx

kθmxn ≡ q

r3
[x× (θ × x)]i =

q

r3

[
r2θ − (x.θ)x

]
i
,

∴ ∇iC
(0) = q

(
θi
r
− (x.θ)xi

r3

)
⇒ C(0) = qθi

xi

r
. (3.5.1.28)
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Thus, we have the overall solution, and the corresponding conserved quantity:

Q ≡ Jkθ
k = C(0) + C

(1)
i Πi =

(
−gim(~x)εmjkx

jΠi + q
xk
r

)
θk,

∴ J .θ =
(
x×Π + q

x

r

)
.θ ⇒ J = x×Π + q

x

r
. (3.5.1.29)

However, if we explore upto the 2nd order, setting C
(2)
ij 6= 0, we will return to the equations

in (3.5.1.24). For the 3rd order equation, the solution for C
(2)
ij is given by (6.2.2.3), so that:

C
(2)
ij = (2gij(x)nk − gik(x)nj − gkj(x)ni)x

k. (3.5.1.30)

Eventually the other co-efficients are given by:

∇(iC
(1)
j) = q

(
FikC

(2)
kj + FjkC

(2)
ki

)
,

FikC
(2)
kj = −2εijn

xn

r3
(nmx

m)︸ ︷︷ ︸
n.x

+ εikn
xkxn

r3
nj︸ ︷︷ ︸

0

+ εiknn
kxn︸ ︷︷ ︸

(n×x)i

xj
r3

∴ ∇iC
(1)
j +∇jC

(1)
i = q

{xj
r3

(n× x)i +
xi
r3

(n× x)j

}
Here, one can choose to insert extra terms:

∇iC
(1)
j +∇jC

(1)
i = −q

{
∇j

(
εikmn

kxm

r

)
+∇i

(
εjkmn

kxm

r

)}
.

Thus, we can easily see which term on the RHS corresponds to what on the LHS, allowing
us to solve for the 1st order and zeroth order coefficients from (3.5.1.24) :

C
(1)
i = −q

r
gim(x)εmjkn

kxj (3.5.1.31)

∇iC
(0) = −q2

(
ni
r2
− (x.n)xi

r4

)
+{2 (n.x) δij − nixj − xinj} ∂j

(
f(r)U(r) + q2 f(r)

2g(r)
+ E − Ef(r)

)
.

In the case of the generalized Taub-NUT metric, the most general potentials admitting a
Runge-Lenz vector are of the form:

U(r) =
1

f(r)

(
q2

2r2
+
β

r
+ γ

)
− q2

2g(r)
+ E (3.5.1.32)

∇iC
(0) = β

(
ni
r
− (n.x)xi

r3

)
C(0) = βni

xi

r
. (3.5.1.33)

For integrability, we require the commutation relation:

[∂i, ∂j]C
(0) = 0 ⇒ ∆

(
f(r)W (r)− q2g2

2r2

)
= 0 ⇒ f(r)W (r)−q

2g2

2r2
=
β

r
+γ β, γ ∈ R.

Thus, this overall conserved quantity is given as:

Q ≡ Rkθ
k = C(0) + C

(1)
i Πi + C

(2)
ij ΠiΠj,

R.n =
(
Π× (x×Π)− q

r
x×Π + β

x

r

)
.n ⇒ R = Π× J + β

x

r
(3.5.1.34)

Now we will take a detour to look at some details regarding the Runge-Lenz vector.
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3.5.2 Bertrand space-time dualities

In Newtonian mechanics, there are only two potentials allowing stable, closed and periodic
orbits: Hooke’s Oscillator (V (r) = ar2 + b), and Kepler’s Orbital Motion (Γ(r) = a

r
+ b)

potentials. There is a relativistic analogue, given by the corresponding metrics in [38], de-
scribing spherically symmetric and static space-time, with bounded and periodic trajectories.
The Taub-NUT is one example of a spherically symmetric space-time. Naturally, one would
compare it with the Euclidean Bertrand space-time (BST) metric with magnetic fields.

Bertrand space-times with magnetic fields

The Bertrand space-time metric is given by (3.5.1). If we take the Euclidean version and in-
clude magnetic monopole and dipole interaction terms, then the metric becomes like (3.5.1.4)
as:

ds2 = h(ρ)2dρ2 + ρ2
(
dθ2 + sin2 θ dφ2

)
+

1

Γ(ρ)

(
dt+ Aidx

i
)2

(3.5.2.1)

If we recall, the Taub-NUT metric was given by (3.5.1.10). To see how they are comparable,
we shall attempt a co-ordinate map.

f(r) dr2 = h(ρ)2dρ2 f(r)r2 = ρ2 g(r) =
1

Γ(ρ)
t = ψ + k

⇒ dr

r
=
h(ρ) dρ

ρ
⇒ r = r0 e

∫
dρ

h(ρ)
ρ

Thus, we can suppose that Taub-NUT metric resembles Bertrand space-time with magnetic
fields. We can also proceed the other way around, starting with the generalized Taub-NUT
metric and proceeding toward Bertrand space-times by applying appropriate potential power
laws shown in [147]. Thus, like the BSTs, there are two Taub-NUT configurations:

1. Hooke’s Oscillator configuration:

fO(r) = ar2 + b gO(r) =
r2 (ar2 + b)

cr4 + dr2 + 1
.

2. Kepler’s orbital configuration:

fK(r) =
a+ br

r
gK(r) =

r (a+ br)

cr2 + dr + 1
.

Evidence for the duality between these two configurations of the metric can be clearly
demonstrated. To study Taub-NUT space duality, we confine motion to a cone (θ = const).
This is permissible because of the conserved angular momentum (3.5.1.18), for which [35,
147, 148]

J .er =
∣∣J ∣∣ cos θ = const ⇒ θ = const (3.5.2.2)

This allows us to reduce the problem to 2-dimensions by rendering θ a constant co-ordinate,
allowing us to write the metric as:

ds2 = f(r)
(
dr2 + r2α2 dφ2

)
+ g(r) (dψ + β dφ)2 α = sin θ, β = cos θ (3.5.2.3)

We shall represent the co-ordinates as Z = x + iy, ξ = X + iY , where |Z| = r cos θ
2

and
perform Bohlin’s transformation [149] of the Oscillator metric (Z → ξ = Z2) (see Appendix
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6.3). This requires the complex co-ordinates defined for self-dual Euclidean spaces [118],
where (θ = const) (3.5.2.2):

Z = x+ iy = |Z| exp

[
i

2
(ψ + φ)

]
ξ = X + iY = |ξ| exp

[
i

2
(χ+ Φ)

]
(3.5.2.4)

Z → ξ = Z2 = |Z|2 exp [i (ψ + φ)] ⇒ φ→ Φ = 2φ, ψ → χ = 2ψ (3.5.2.5)

(
ds2
)
O =

(
a|Z|2 + b

)
|dZ|2 +

|Z|2(a|Z|2 + b)

c|Z|4 + d|Z|2 + 1
(dψ + β dφ)2 (3.5.2.6)

(
a|Z|2 + b

)
|dZ|2 +

|Z|2(a|Z|2 + b)

c|Z|4 + d|Z|2 + 1
(dψ + β dφ)2

Z → ξ = Z2

xyφ→ Φ = 2φ, ψ → χ = 2ψ

1

4

{
a|ξ|+ b

|ξ|
|dξ|2 +

|ξ| (a|ξ|+ b)

c|ξ|2 + d|ξ|+ 1
(dχ+ β dΦ)2

}
Then we can compare with the Kepler system in presence of magnetic fields:

(
ds2
)
K =

b|Z|+ a

|Z|
|dZ|2 +

|Z| (b|Z|+ a)

c|Z|2 + d|Z|+ 1
(dχ+ β dΦ)2 (3.5.2.7)

showing that aside from a factor of
1

4
, a variable swap a↔ b completes the transformation,

and thus, the two configurations of Taub-NUT are also related via Bohlin’s transforma-
tion like Bertrand space-time. For various settings of the constants, one can get different
configurations of space-time, as shall be described in the following table.

Kepler-Oscillator duality

In the study of central force problem, we learn that the Kepler and Oscillator systems are
dual to each other according a duality map demonstrated in [30] and [36]. This is summed
up in Bertrand’s theorem which describes them as the only systems with stable, closed and
periodic orbits. Thus, curved Bertrand space-times are classified as Type I and Type II,
representing Kepler and Oscillator systems respectively.

If we start with the 2-dimensional simple harmonic oscillator described by ẍi = −ω2xi,
we are reminded of a conserved tensorial quantity, known as the Fradkin tensor:

T ij = pipj + κxixj i, j = 1, 2 (3.5.2.8)

Any conserved quantity can be obtained by contracting the Fradkin tensor over its two
indices by any chosen structure. ie.

Q = MijT
ij (3.5.2.9)

This quantity is symmetric under index permutation. Its complex counterpart is given by:

Tzazb = Gij
zazb

Tij za = {z, z̄} (3.5.2.10)

Gzz =

(
1 i
i −1

)
Gz̄z̄ =

(
1 −i
−i −1

)
Gzz̄ = Gz̄z =

(
1 0
0 1

)
(3.5.2.11)
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Table 3.1: Systems for various settings (K - Kepler, O - Oscillator)

Type a b c d f(r) g(r) System Name

K 0 1 1 −2 1
r2

(1− r)2
MIC-Zwangier

K 0 1 0 −2k

q2
1

r2

1− 2k
q2
r

MIC-Kepler

O 0 1
k

q2
0 1

r2

1 + k
q2
r4

MIC-Oscillator

K 4m 1 0
1

4m

4m+ r

r

(4m)2r

4m+ r
Euclidean Taub-NUT

According to the Arnold-Vasiliev duality [150], a co-ordinate transformation and re-parametrization
of the first two complex Fradkin tensors will give us the Laplace-Runge-Lenz vector.

A = p×L+ β
x

r
(3.5.2.12)

In tensorial form, this is written as follows:

Ai = εiklε
l
jmp

kxjpm +
β

r
δijx

j = xj
{

(δijδkm − δikδjm) pkpm +
β

r
δij

}
(3.5.2.13)

showing that the 1st term can be expressed in a form quadratic in momenta. Since it is
essentially a linear combination of Fradkin tensor components, we would prefer it to be
symmetric in the momentum indices like its oscillator counterpart. Thus, we can write

Ai = xj
{

1

2
(2δijδkm − δikδjm − δimδjk) pkpm +

β

r
δij

}
(3.5.2.14)

Hence, to describe this conserved quantity of the Kepler system, we need tensors that are:

1. quadratic in momenta

2. symmetric under index permutation

3. conserved along geodesics

Our next step will be to explore such tensors in the next subsection.
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3.5.3 A review of geometric properties

Since we are considering the Taub-NUT metric defined on a 4-dimensional Euclidean plane,
it is worthwhile to verify if it is an instanton as well. Here, we will analyze its geomet-
rical properties exhaustively, verify if the Taub-NUT is an instanton from the curvature
components computed from the metric, and also take a look at its topological properties.

A variable transformation m = 2M and ρ = r − 2M of (3.5.1.10) gives the Taub-NUT as:

ds2 =
r +m

r −m
dr2 + 4m2 r −m

r +m
(dψ + cos θ dφ)2 +

(
r2 −m2

) (
dθ2 + sin2 θ dφ2

)
.

This can be further recast into the form:

ds2 =
r +m

r −m
dr2 + 4m2 r −m

r +m
σ2

1 +
(
r2 −m2

) (
σ2

2 + σ2
3

)
, (3.5.3.1)

where the variables σi are essentially solid angle elements in 4-dimensional Euclidean space
obeying the following structure equation:

dσi = −εijk σj ∧ σk, σi = − 1

r2
ηiµνx

µdxν . (3.5.3.2)

Now that we have identified the vierbeins, we will proceed to implement Cartan’s method
of computing spin connections and the Riemann curvature components. Embedded within
them are the SU(2) gauge fields and their corresponding field strengths as we shall see.

Taub-NUT as a Darboux-Halphen system

The Taub-NUT is a special case of self-dual Bianchi-IX metrics [116], which are characterized
by the classical Darboux-Halphen system. The self-dual metric and its characteristic system
of equations are given by:

ds̃2 = (Ω1Ω2Ω3) dr̃2 +
Ω2Ω3

Ω1

(σ1)2 +
Ω3Ω1

Ω2

(σ2)2 +
Ω1Ω2

Ω3

(σ3)2 , (3.5.3.3)

Ω′1 = Ω2Ω3 − Ω1 (Ω2 + Ω3)

Ω′2 = Ω3Ω1 − Ω2 (Ω3 + Ω1)

Ω′3 = Ω1Ω2 − Ω3 (Ω1 + Ω2)

( )′ =
d

dr̃
( ). (3.5.3.4)

where Ωi are parameters defined to re-write the Bianchi-IX metric into the form (3.5.3.3) to
write self-dual equations. One particular first integral of this system [151, 152] is:

Q =
(Ω1)2

(Ω3 − Ω1)(Ω1 − Ω2)
+

(Ω2)2

(Ω1 − Ω2)(Ω2 − Ω3)
+

(Ω3)2

(Ω2 − Ω3)(Ω3 − Ω1)
(3.5.3.5)

In case of the Taub-NUT, we need to set Ω2 = Ω3 = Ω 6= Ω1 = Λ. This way, we will get the
following metric, system of equations and first integral:

ds̃2 = Ω2Λ dr̃2 + Λ
[
(σ2)2 + (σ3)2]+

Ω2

Λ
(σ1)2 , (3.5.3.6)
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dΛ

dr̃
= Ω(Ω− 2Λ)

dΩ

dr̃
= −Ω2 (3.5.3.7)

[
lim

Ω2→Ω3=Ω
Q

]
Ω1=Λ

= − Λ2

(Λ− Ω)2
+

1

Λ− Ω

[
lim

Ω2→Ω3=Ω

(
(Ω2)2

Ω2 − Ω3

− (Ω3)2

Ω2 − Ω3

)]
= − Λ2

(Λ− Ω)2
+

2Ω

Λ− Ω
= −1−

(
Ω

Λ− Ω

)2

(3.5.3.8)

Rescaling the radius and solving (3.5.3.7) with suitable constants of integration gives us:

dr̃ = − dr

2mΩ2

dΩ

dr
=

1

2m

d

dr

(
Λ

Ω2

)
= − 1

Ω2

dΩ

dr

Ω =
r −m

2m
Λ =

r2 −m2

4m2
(3.5.3.9)

and rescaling the metric as ds̃ =
ds

2m
we get the Taub-NUT (3.5.3.1) and conserved quantity:

ds2 =
r +m

r −m
dr2 + 4m2 r −m

r +m
(σ1)2 + (r2 −m2)

[
(σ2)2 + (σ3)2] ,

[
lim

Ω2→Ω3=Ω
Q

]
Ω1=Λ

= −1−
(

Ω

Λ− Ω

)2

= −r
2 − 2mr + 5m2

(r −m)2
(3.5.3.10)

This concludes another possible symmetry of the Taub-NUT as a member of Bianchi-IX
metrics or solutions to Darboux-Halphen systems.

Curvature and anti-self duality

We can now analyze its geometry of the Euclidean space (3.5.3.1), as done for the Bianchi-IX
metric in Subsec 3.4.1. The spin-connection matrix according to (3.4.1.4) can be constructed
as shown below:

ω =



0 − 2m2

(r +m)2
σ1 −

(
1− m

r +m

)
σ2 −

(
1− m

r +m

)
σ3

2m2

(r +m)2
σ1 0 − m

r +m
σ3 m

r +m
σ2(

1− m

r +m

)
σ2 m

r +m
σ3 0 −

(
1− 2m2

(r +m)2

)
σ1(

1− m

r +m

)
σ3 − m

r +m
σ2

(
1− 2m2

(r +m)2

)
σ1 0


(3.5.3.11)

If we view the spin connections as a linear combination of self dual and anti-self dual tensors,
then we can accordingly separate the self and anti-self dual components as ωij = ω

(+)
ij +ω

(−)
ij .

To this end, we can split the spin connection matrix (3.5.3.11) into two separate components:
the self dual and the anti-self dual parts

ω(+) = −1

2

(
σ1η1 + σ2η2 + σ3η3

)
= −1

2
σiηi

ω(−) =

{(
1

2
− 2m2

(r +m)2

)
σ1η̄1 −

(
1

2
− m

r +m

)(
σ2η̄2 − σ3η̄3

)} (3.5.3.12)
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For reference, we have the t’Hooft symbol matrices η(±), which exhibit the su(2) Lie algebra:

[ηi, ηj] = −2εij
kηk

The curvature tensor can be decomposed into self and anti-self dual parts Rij = R
(+)
ij +R

(−)
ij ,

where according to Cartan’s 2nd equation, R = dω + ω ∧ ω. Thus, we can write the spin
connections as as a linear combination of self and anti-self dual t’Hooft symbols giving us the
self-dual and anti-self dual spin connections described in (3.5.3.12). Consequently, according
to (3.5.3.2), the curvature tensor vanishes for the self-dual part:

∴ R(+) = dω(+) + ω(+) ∧ ω(+) = −1

2

(
dσi + εijk σ

j ∧ σk
)
ηi = 0 (3.5.3.13)

Only the anti-self dual curvature remains, reflecting the Taub-NUT’s anti-self dual nature.
We make our job easier by writing the spin connection as ω(−) = ω

(−)
1 + ω

(−)
2 :

ω(−) =
1

2

(
σ1η̄1 − σ2η̄2 + σ3η̄3

)
+

{
− 2m2

(r +m)2
σ1η̄1 +

m

r +m

(
σ2η̄2 − σ3η̄3

)}
(3.5.3.14)

where one can verify that ω
(−)
1 will follow the same rule as ω(+) in (3.5.3.13).

This allows us to compute the anti-self-dual curvature is given by

∴ R(−) =
2m

(r +m)3
η̄1

(
e0 ∧ e1 − e2 ∧ e3

)
+

m

(r +m)3

{
−η̄2

(
e0 ∧ e2 − e3 ∧ e1

)
+ η̄3

(
e0 ∧ e3 − e1 ∧ e2

)} (3.5.3.15)

where we can see from the signs attached to the dual components that the curvature derived
from Taub-NUT metric is clearly anti-self dual, as shown in [153]. This also lets us conclude
that it is an instanton. To elaborate further, we can show that only SU(2)− gauge fields are
embedded within the spin-connection components as shown below:

ω(±)
µν = η(±)k

µν A
(±)
k ⇒ A(±)i =

1

4
η(±)i
µν ωµν (3.5.3.16)

A(+)1 = −σ
1

2
A(−)1 =

(
1− 4m2

(r +m)2

)
σ1

2

A(+)2 = −σ
2

2
A(−)2 = −r −m

r +m

σ2

2

A(+)3 = −σ
3

2
A(−)3 =

r −m
r +m

σ3

2

(3.5.3.17)

while the field strengths are given by:

R(−)
µν = η(−)k

µν F
(−)
k ⇒ F (±)i =

1

4
η(±)i
µν Rµν (3.5.3.18)

F (−)1 = R01 = −R23 =
2m

(r +m)3

(
e0 ∧ e1 − e2 ∧ e3

)
F (−)2 = R02 = −R31 = − m

(r +m)3

(
e0 ∧ e2 − e3 ∧ e1

)
F (−)3 = R03 = −R12 =

m

(r +m)3

(
e0 ∧ e3 − e1 ∧ e2

) (3.5.3.19)
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where it is obvious that due to the absence of self-dual curvature, there are no SU(2)+

gauge fields, ie. F (+)i = 0 and thus field strengths are anti-self dual (F = − ∗ F ) which of
course, coincide with the curvature tensor (3.5.3.15). In terms of 2-forms, the independent
components are given by :

R
(−)
0101 = R

(−)
2323 = −R(−)

0123 =
2m

(r +m)3
(3.5.3.20)

R
(−)
0202 = R

(−)
1313 = R

(−)
0213 = − m

(r +m)3
(3.5.3.21)

R
(−)
0303 = R

(−)
1212 = −R(−)

0213 = − m

(r +m)3
(3.5.3.22)

This lets us compute the Ricci tensors and scalar in accordance with the formula:

Rik = gjlRijkl = δjlRijkl R = δikRik (3.5.3.23)

∴ R00 = R11 = R22 = R33 = 0 R = 0 (3.5.3.24)

Since Ricci tensors vanish, Taub-NUT is clearly a vacuum solution of Einstein’s equations.

Topological Invariants

Topological invariants are analogous to an overall charge distributed in the manifold. In the
gravity side, there are two topological invariants associated with the Atiyah-Patodi-Singer
index theorem for a four dimensional elliptic complex [88, 154]: the Euler characteristic χ(M)
and the Hirzebruch signature τ(M), which can be expressed as integrals of four-manifold
curvature.

Recall that in electromagnetic theory, the field action is given by:

S = − 1

16π

∫
dΩ FijF

ij = − 1

16π

∫
F ∧ F

where F =
1

2
Fijdx

i ∧ dxj and εijkldΩ = dxi ∧ dxj ∧ dxk ∧ dxl

The equations of motion are obtained by solving for minimum variation of the electromag-
netic field action. We merely apply these equations to compute topological invariants as
integrals analogous to action. We can write for the general Lagrangian:

L = cabcdRab ∧Rcd = cabcdF
(±)m
ab F

(±)n
cd η

(±)m
ij η

(±)n
kl εijkldΩ

= ±2dΩcabcdF
(±)m
ab ∂cA

(±)m
d

(
where εijkldΩ = ei ∧ ej ∧ ek ∧ el

)
(3.5.3.25)

Applying Lagrange’s equation gives the contracted Bianchi identity for curvature as:

∂c

(
∂L

∂(∂cA
(±)m
d )

)
= ±2cabcd∂cF

(±)m
ab = 0 (3.5.3.26)

Conversely, we can say that Bianchi identity for SU(2)± gauge fields is at the root of the
invariance of topological quantities. One can verify this starting from (3.5.3.26) and then
working in reverse order to obtain the invariants.
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Given that the boundary integral vanishes, the overall invariant is computed only from
the bulk part. For non-compact manifolds like Taub-NUT, there are additional boundary
terms neither separated into self-dual nor anti-self-dual parts unlike the volume terms. They
are the so-called eta-invariant ηS(∂M), given for k self-dual gravitational instantons by [155]

ηS(∂M) = − 2ε

3k
+

(k − 1)(k − 2)

3k

{
ε = 0; ALE boundary conditions

ε = 1; ALF boundary conditions
(3.5.3.27)

Since Taub-NUT is a ALF hyperkähler four-manifold it has a non-vanishing eta-invariant
which is equal to −2

3
. According to calculations described in [156], upon applying curvature

components of (3.5.3.15), the Euler characteristic χ and the Hirzebruch signature complex
τ are:

χ(M) =
1

32π2

∫
M

εabcdRab ∧Rcd = 1 (3.5.3.28)

τbulk(M) = − 1

12π2

(∫
M

Rab ∧Rab

)
a<b

=
2

3

∴ τ(M) = τbulk(M) + ηS(∂M) = 0

(3.5.3.29)

One could say that the general form of various topological invariants can be written as:

C(M) =
1

kπ2

∫
M

cabcdRab ∧Rcd =


1

kπ2

∫
M
Fab
(
∗F ab

)
; cabcd = εabcd (Euler Char.)

1

kπ2

∫
M
FabF

ab; cabcd = gacgbd (Hirzebruch Sign.)

(3.5.3.30)
where cabcd is contracting tensor defined in respect to the relevant circumstances.

3.5.4 Killing-Yano tensors and the Taub-NUT metric

There are tensors quadratic in momenta and conserved along geodesics, expressed as a vector
K whose components transform among themselves under 3-dimensional rotations. They are
very similar to the Runge-Lenz vector in the Kepler problem with components:

K(i) =
1

2
K(i)µνpµpν (3.5.4.1)

Provided that J0 6= 0, such vectors usually satisfy the following property:

r.

(
K ± HJ

J0

)
=

1

2

(
J2 −

(
J0
)2
)

(3.5.4.2)

where if (J0,J , H,K) are all constant, the 3-dimensional position vector r lies in a plane.

Using (3.5.4.2) and the relation J0 =
r.J

r
, we can see that:

r.K = ∓rH +
1

2

(
J2 −

(
J0
)2
)

(3.5.4.3)

In Taub-NUT geometry, there are also 4 completely antisymmetric Killing tensors known
as Killing-Yano (KY) tensors. Three of these are complex structures, realizing quaternionic
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algebra since the Taub-NUT manifold is hyper-Kähler. The fourth is a scalar with a non-
vanishing field strength and it exists by virtue of the metric being of Petrov type D. Their
existence is implied by a triplet of symmetric 2nd rank Killing tensors called the Stäckel-
Killing tensor satisfying:

D(λK
(i)
µν) = 0 (3.5.4.4)

We will examine properties of KY tensors relevant for studying Taub-NUT symmetries.
Before that, let us list some references that initiated the study of such dynamical symmetries.

Dynamical symmetries of the Kaluza Klein monopole were discussed in detail by Feher
in [157]. The dynamics of two non-relativistic BPS monopoles was described using Atiyah-
Hitchin metric (Taub-NUT being a special case), the corresponding O(4)/O(3, 1) symmetry
discovered in [158], and applied to calculate the underlined motion group-theoretically in
[159]. The symmetry was then extended to O(4, 2) in [160] and [161]. In [160] Gibbons et.
al discussed dynamical symmetries of multi-centre metrics and applied the results to the
scattering of BPS monopoles and fluctuations around them, giving a detailed account of the
hidden symmetries of the Taub-NUT. The hidden symmetries in large-distance interactions
between BPS monopoles and of the fluctuations around them are traced to the existence of
a KY tensor on the self-dual Taub-NUT. The global action on classical phase space of these
symmetries was discussed in [162] and the quantum picture involving the “dynamical groups”
SO(4), SO(4, 1) and SO(4, 2) was also given. A comprehensive review of the dynamical
symmetry can be found in [163]. Supersymmetry and extension to spin has also been studied
in [164, 165].

Yano and Stäckel tensors

We can construct these KY tensors in terms of simpler objects known as Yano tensors that
are antisymmetric rank 2 tensors satisfying the Killing like equation. Thus, the covariant
derivative is antisymmetric over permutations of all possible pairs of indices. This allows us
to write the covariant derivative of the Yano tensor in terms of the cyclic permutations as:

fµν = −fνµ ∇µfνλ +∇νfµλ = 0 (3.5.4.5)

∇µfνλ = ∇νfλµ = ∇λfµν = ∇[µfνλ] =
1

3
(∇µfνλ +∇νfλµ +∇λfµν) (3.5.4.6)

We can also construct symmetric Killing tensors of rank 2 by symmetrized multiplication:

K(ab)
µν =

1

2

(
f (a)λ
µ f

(b)
λν + f (b)λ

µ f
(a)
λν

)
≡ 1

2

(
f (a)λ
µ f

(b)
λν + f (a)λ

ν f
(b)
λµ

)
= Kab

(µν) (3.5.4.7)

These symmetric Killing tensors satisfy the condition (3.5.4.4). The Taub-NUT manifold
admits 4 such KY tensors, given by a scalar f 0 and three components that transform as a
vector f i ∀ i = 1, 2, 3. We can form triplets of symmetric Killing tensors as in (3.5.4.7),
given by setting a = 0 and b = i:

K(i)
µν = K(0i)

µν =
1

2

(
f 0λ
µ f iλν + f iλµ f

0
λν

)
i = 1, 2, 3 (3.5.4.8)

Using (3.5.4.5) we can see how they obey (3.5.4.4) as follows:

∇γK
ij
(µν) +∇µK

ij
(νγ) +∇νK

ij
(γµ) = 0,

∇(γK
ij
µν) = 0 ⇒ ∇(γK

i
µν) ≡ ∇(γK

0i
µν) = 0 (3.5.4.9)

100



This allows us to construct the tensors of (3.5.4.1) that are quadratic in momenta, showing
how to get Stäckel tensors from the KY tensors. However, since the KY tensor is anti-
symmetric, it cannot be used to form polynomials with components of the same vector.
Thus, it will have to be a mixed product of components of different vector quantities, as
found in case of the angular momentum, a product between one position and one momentum
component each. Applying Holten’s algorithm yields the Killing equation in (3.5.4.5).

Euclidean Taub-NUT

The Taub-NUT metric [166] admits four such Yano tensors written as the following 2-forms:

f 0 = 4 (dψ + cos θ dφ) ∧ dr + 2r (r ± 1) (r ± 2) sin θ dθ ∧ dφ (3.5.4.10)

f i = ±4 (dψ + cos θ dφ) ∧ dxi − εijkf(r) dxj ∧ dxk, ∀i, j, k = 1, 2, 3 (3.5.4.11)

One can always find Killing tensors embedded within conserved quantities, as evident from
the Poisson Brackets of any conserved quantity expanded ala Holten’s algorithm. The coef-
ficient from Laplace-Runge-Lenz vector is analogous to the Killing-Stäckel tensor Kij, so we
can argue:

Q(2) = KijΠ
iΠj ≡ 1

2
C

(2)
ij ΠiΠj (3.5.4.12)

Now the angular momentum co-efficients according to (3.5.1.29) are:

C(0) = q gjk(~x)
xj

r
θk C

(1)
i = −gim(~x)εmjkθ

kxj (3.5.4.13)

If we write C
(1)
i = fikθ

k (see Appendix 6.2), using Holten’s Algorithm gives:

∇jC
(1)
i = ∇jfikθ

k = −gim(~x)εmjkθ
k

∇iC
(1)
j +∇jC

(1)
i = 0 ⇒ (∇ifjk +∇jfik) θ

k = 0

which is the Killing equation (3.5.4.5). Thus, we can say that the KY tensor is

f 0
jk = gjk(~x) ⇒ f j0k = δjk (3.5.4.14)

f ijk = εijk ⇒ f i = εijke
j ∧ ek (3.5.4.15)

such that the square of it gives the Stäckel tensor

Kk
ij = f 0

imf
km

j (3.5.4.16)

This shows how Killing tensors are embedded within the conserved quantities. We can choose
four combinations of three indices out of the available four. Since Taub-NUT can be written
in an alternate form given by (3.5.1.10), the vierbeins of the metric are given by:

e0 =
4
(
dψ + ~A.d~x

)
√
f(r)

ei =
√
f(r) dxi (3.5.4.17)

So, according to our theory, we should have

f i = −εijk ej ∧ ek + δik e
0 ∧ ek

= −εijkf(r)dxj ∧ dxk ± 4
(
dψ + ~A.d~x

)
∧ dxi

(3.5.4.18)
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This result so far is comparable with the result (3.5.4.11), so we have a possible method
for constructing Killing-Yano tensors from the coefficients of conserved quantities. Their
covariant exterior derivatives and their properties are given by:

Df 0 = ∇γf
0
µνdx

γ ∧ dxµ ∧ dxν = r (r ± 2) sin θdr ∧ dθ ∧ dφ, (3.5.4.19)

Df i = 0, ∀i = 1, 2, 3. (3.5.4.20)

From the results above, we can infer that the covariant derivatives hold following properties:

∇γf
0
µν = ∇µf

0
νγ = ∇γνf

0
γµ, ∇γf

i
µν = 0 i = 1, 2, 3. (3.5.4.21)

showing that they obey the condition for covariant derivatives of KY tensors. As shown in
(3.5.4.8), these tensors can form a symmetric triplet or a vector of Killing tensors. They also
exhibit the mutual anti-commutation property:

f if j = −δij + εijkf
k,

{
{f i, f j} = f if j + f jf i = −2δij,

[f i, f j] = f if j − f jf i = 2εijkf
k.

(3.5.4.22)

proving that they are complex structures realizing the quaternion algebra. This implies
that the 2-forms f i are objects in the quaternionic geometry and possibly hyperkähler
structures. This leads us to the next subsection where we examine the hyperkähler structure
of the Taub-NUT.

Graded Lie-algebra via Schouten-Nijenhuis Brackets

We will now see if the KY tensors of the Taub-NUT metric exhibit Lie algebra under the
action of Schouten-Nijenhuis Brackets. If they do, it would allow us to form higher order KY
tensors from lower order ones of rank greater than 1. In particular it is noteworthy in this
context that, Kastor et. al already found that KY tensors on constant curvature space-times
do form Lie algebras with respect to the SN bracket [167].

The Schouten-Nijenhuis Bracket (SNB) is a bracket operation between multivector fields.
The SNB for two such fields A = Ai1i2...im

∧m
k=1 ∂ik ; B = Bj1j2...jn

∧n
k=1 ∂jk , is given by

Ca1...am+n−1 = [A,B]a1...am+n−1

SN

= mAc[a1...am−1∇cB
am...am+n−1] + n (−1)mnBc[a1...an−1∇cA

an...am+n−1].
(3.5.4.23)

This new tensor is completely antisymmetric, fulfilling the first requirement to be considered
a KY tensor. All that remains is for its covariant derivative to exhibit the same Killing
equation (3.5.4.6) relevant to such tensors. Now, we will use an important identity (see
(6.4.3) in Appendix 6.4) for KY tensors:

∴ ∇a∇bKc1c2...cn = (−1)n+1n+ 1

2
R[bc1|a|

dKc2c3...cn]d. (3.5.4.24)

we get upon applying to the covariant derivative of this new tensor:

∇bCa1...am+n−1 = − (m+ n)
(
∇cA[ba1...am−1

)
∇cBam...am+n−1]

− (m+ n)Ac[a1...am−1R|bd|camBam+1...am+n−1]
d.

(3.5.4.25)
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The 1st term easily shows anti-symmetry of index b with other indices, but the 2nd term
exhibits it only under certain circumstances. One could say that by symmetry properties of
the curvature tensor, in maximally symmetric spaces it could be expressed as:

Rabcd(x) = f(x)gij(x)εiabε
j
cd = f(x) {gac(x)gbd(x)− gad(x)gbc(x)} . (3.5.4.26)

So, for cases of constant curvature f(x) = k, we could write

(Rabcd)const = k {gac(x)gbd(x)− gad(x)gbc(x)} . (3.5.4.27)

Thus, upon applying the constant curvature formula of (3.5.4.27) to (3.5.4.25), we will get

∇bCa1...am+n−1 = − (m+ n)
[ (
∇cA[ba1...am−1

)
∇cBam...am+n−1]

− kA[a1...am−1Bam...am+n−1b]

]
= ∇[bCa1...am+n−1].

(3.5.4.28)

Clearly this matches the property eq.(3.5.4.6) expresses, showing that it is also a KY tensor.
So the SNB of any two KY tensors in spaces of constant curvature is also a KY tensor.

However, as evident from (3.5.3.15), the curvature of the Taub-NUT metric is not con-
stant, allowing us to conclude that its KY tensors do not exhibit Lie algebra under SN
Brackets. Thus, we cannot produce higher order KY tensors using the lower order ones for
the Taub-NUT as shown in [168]. So, we are limited to the set of four available rank two
KY tensors.

3.5.5 Hyperkähler structure and the KY tensors

Now we will consider the hyperkähler structures related to the Taub-NUT metric. To begin
with, we will define both, kähler and hyperkähler structures.

Definition 3.5.1. Kähler manifold: If a complex manifold M has a hermitian metric g
and a fundamental 2-form ω which is closed (dω = 0) then M is a Kähler manifold and ω is
a Kähler form.

The connection between the metric g and the Kähler form ω is:

ωµν = Jµ
λ.gλν = (Jg)µν , (3.5.5.1)

where J is the complex structure, for which J2 = −1.

Definition 3.5.2. Hyperkähler manifold: If M is a hyper-complex manifold with a
hyper-Hermitian metric g and a triplet of fundamental forms ~ω which are closed (d~ω = 0)
then M is a Hyperkähler manifold. It is the same as the Kähler manifold except that there
are more than one type of complex structures. In case of 4 dimensions, there are 3 such
integrable complex structures (i, j, k), and they obey the algebraic relations:

i2 = j2 = k2 = ijk = −1. (3.5.5.2)

This would also imply that there are corresponding number of different 2-forms available in
this case, known as the Hyperkähler forms, given by:

ωiµν = J iµ
λ
.gλν =

(
J ig
)
µν
, (3.5.5.3)
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where gλν is the hyper-hermitian metric and J iµλ is the almost complex structure exhibiting
quaternion algebra

JαJβ = −δαβI + εαβ
γJγ. (3.5.5.4)

Thus, we can see that the hyperkähler structures exhibit the same algebra:(
J iJ j

)
µν

= J iµρ g
ρσJ jσν

[
J i, J j

]
µν

= 2εijkJ
k
µν ,(

ωiωj
)
µν

= ωiµγω
jγ
ν =

(
J iµ

ρ
.gργ

)
gγλ
(
J jλ

σ
.gσν

)
= J iµ

ρ
J jρ

σ
gσν =

(
J iJ jg

)
µν
,

∴
[
ωi, ωj

]
µν

=
( [
J i, J j

]
g
)
µν

= 2
(
εijkJ

kg
)
µν

= 2εijkω
k
µν .

These complex structures originate from the t’Hooft symbols which have 3 self dual and 3
anti-self dual components. That means we could have six different symplectic 2-forms. The
almost complex structures J i can be represented by t’Hooft symbols, which themselves can
be given by linear combinations of antisymmetric tensor εijk and delta function δij.

J ijk = εijk ±
1

2

(
δ0
jδ
i
k − δ0

kδ
i
j

)
. (3.5.5.5)

Thus, we can argue that hyper-kähler structures given by (3.5.5.3) are:

ωijk =
(
J ig
)
jk

= gjn(~x)

[
εink ±

1

2

(
δ0nδik − δ0

kδ
in
)]
. (3.5.5.6)

As introduced in (3.5.1.11) and following [169] we shall take a different form of the Taub-NUT

ds2 = V (r) δij dx
idxj + V −1(r) (dτ + ~σ.d~r)2 . (3.5.5.7)

for which, the vierbeins, in a similar fashion to (3.5.4.17) are given by

e0 =
4 (dτ + ~σ.d~r)√

V (r)
ei =

√
V (r) dxi.

Thus, remembering that g = δije
i ⊗ ej the hyper-kähler forms are given by:

ωi = ωijkdx
j ∧ dxk = J ijke

j ∧ ek (3.5.5.8)

ωi =

[
εijk ±

1

2

(
δ0
jδ
i
k − δ0

kδ
i
j

)]
ej ∧ ek = εijkV (r)dxj ∧ dxk − e0 ∧ ei,

∴ ωi = εijkV (r)dxj ∧ dxk ±
(
dτ ∧ dxi + σn.dx

n ∧ dxi
)

(3.5.5.9)

For the Taub-NUT, choosing only anti-self-dual components for V (r) = l+
1

r
and restricting

~σ to lie on a plane (~σ = (0, σ2, σ3)), the reduced symplectic forms are:

ω1 = dx1 ∧ dτ + σ2dx
1 ∧ dx2 + σ3dx

1 ∧ dx3 +

(
l +

1

r

)
dx2 ∧ dx3

ω2 = dx2 ∧ dτ + σ3dx
2 ∧ dx3 −

(
l +

1

r

)
dx1 ∧ dx3

ω3 = dx3 ∧ dτ − σ2dx
2 ∧ dx3 +

(
l +

1

r

)
dx1 ∧ dx2

(3.5.5.10)
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Table 3.2: Comparison between Killing-Yano Tensors and Hyperkähler Structures

i Killing-Yano tensor f i Hyperkähler structure ωi

i ±4 (dψ + Andx
n) ∧ dxi − εijkf(r)dxj ∧ dxk ± (dτ + σn.dx

n) ∧ dxi + εijkV (r)dxj ∧ dxk

1 ∓4dx1 ∧ (dψ + Andx
n) +

(
1 +

4

r

)
dx2 ∧ dx3 dx1 ∧ (dτ + σ2dx

2 + σ3dx
3) +

(
l +

1

r

)
dx2 ∧ dx3

2 ∓4dx2 ∧ (dψ + Andx
n)−

(
1 +

4

r

)
dx1 ∧ dx3 dx2 ∧ (dτ + σ3dx

3)−
(
l +

1

r

)
dx1 ∧ dx3

3 ∓4dx3 ∧ (dψ + Andx
n) +

(
1 +

4

r

)
dx1 ∧ dx2 dx3 ∧ (dτ − σ2dx

3) +

(
l +

1

r

)
dx1 ∧ dx2

This construction of hyperkähler structures is similar to how spatial KY tensors were de-
duced, proving that the KY tensors are the hyperkähler structures of the Taub-NUT metric.

Few points are worth mentioning here. By studying the G2 holonomy equation for bi-
axial anti-self dual Bianchi IX base Gibbons et.al [170] found that the associated first order
equations satisfied by the metric coefficients yield the self-dual Ricci flat Taub-NUT metrics
where SO(3) ⊂ U(2) rotates the three hyperkähler forms as a triplet.
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Chapter 4

Relativistic Mechanics of accelerating
particles

Authors: S. Chanda, P. Guha.

Int. J. Geom. Methods in Mod. Phys. 15 (2018) 1850062, arXiv: 1706.1921 [hep-th].

4.1 Introduction

In relativistic mechanics, we describe a geometric perspective of dynamics. This means
that we start by describing pseudo-Riemannian spaces via metrics (M, g) by which we shall
measure infinitesimal arc lengths in such spaces. Dynamical trajectories or geodesics between
any two chosen fixed points are the shortest path in terms of integrated length in between.
We are familiar with the usage of infinitesimal arc length in special relativity for flat spaces.

ds2 = ηµν dx
µdxν = c2dt2 − |dx|2. (4.1.1)

In general or curved spaces, the general infinitesimal arc length element is given by:

ds2 = gµνdx
µdxν = g00c

2dt2 + 2g0ic dt dx
i + gijdx

idxj, i, j = 1, 2, 3. (4.1.2)

which becomes flat when gµν = ηµν = diag(1,−1,−1,−1). Thus, we must derive mechanical
formulation from (4.1.2) to correctly describe relativistic mechanics in general on curved
spaces. space-time for the usual problems dealt with in classical mechanics simply involve a
4-potential Aµ = (U,−A), for which, we shall have the spatial terms of the metric are flat
(gij = −δij).

One important rule for a metric to abide by is that it must be invariant under the Lorentz
transformation, which is easily formulated in special relativity for free particles travelling at
constant velocity. However, the familiar Lorentz transformation does not preserve metrics
describing trajectories for particles in the presence of potential fields. Thus we must define
the Lorentz transformation in such a way that it locally preserves such metrics, meaning
that the metric at a point is invariant only under the transformation rule defined at that
same point. Its local nature means that position co-ordinates cannot be transformed as in
special relativity.

There is an alternate ad hoc approach taken to formulate the relativistic Lagrangian,
employed in publications by Harvey [171] and Babusci et al [172], to describe the dynamics of
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the relativistic oscillator and Kepler. It essentially draws from the conventional formulation
of the Lagrangian provided by Goldstein in [173]

L = −mc2

√
1−

(v
c

)2

− U. (4.1.3)

where the kinetic energy term is kept separate from the potential term. Although (4.1.3)
gives the correct relativistic answers for practical problems, this Lagrangian is not Lorentz
covariant. One may suspect that under some approximations, the formulation born from the
metric will transform into the conventional Lagrangian based approach.

The conventional gravitational field yields conserved dynamics in a central force field
without drag. However, motion involving drag is a significant topic in the study of dynamical
systems, describing realistic situations, with practical applications mostly in engineering. It
would naturally be very interesting to see what kinds of space-times and gravitational fields
produce dynamics involving drag. Such systems are not always integrable unless certain
conditions are fulfilled by the drag co-efficient functions and the force-field functions. The
relativistic generalizations of Lagrangian/Hamiltonian systems with position-dependent mass
[174, 175, 176] could be treated within this formalism. Such systems are in some cases
equivalent to constant mass motion on curved spaces, and some nonlinear oscillators can be
interpreted in this setting.

This chapter is organized as follows: Section 4.2 is devoted to the preliminaries on the
formulation of special relativistic mechanics in flat space-time, followed by static curved
spaces dealt with in classical mechanics. There we deduce the relativistic deformation of
the Euler-Lagrange equation, and a conserved quantity related to such mechanics. We also
describe relativistic Hamiltonian mechanics in curved spaces.

Section 4.3 deals with the modification of the Lorentz transformation under which such
metrics are invariant. This is necessary since the regular Lorentz transformation, designed to
work for free particles in the case of special relativity, will not suffice for particles accelerating
under the influence of a potential field. Then, we will deduce the formulas for time-dilation,
length contraction, and gravitational redshift from the modified Lorentz transformation for-
mula.

Section 4.4 will list the various approximations that can be made and how they affect
our formulations. Here we will verify if the relativistic Lagrangian under any of these ap-
proximations transforms into the conventional one employed by Harvey and Babusci et al.

Section 4.5 will cover formulation of the relativistic 2D oscillator using our approach.
Here we will verify if the Bohlin-Arnold-Vasiliev duality between relativistic Kepler and
Hooke systems holds in such non-classical settings, and what approximations, if any, are
required. Such dualities are observable in Bertrand space-time metrics which correspond
either to oscillator or to Kepler systems on the associated three dimensional curved spatial
manifold [177], which could be studied from this perspective.

Section 4.6, finally, will study relativistic damped mechanical systems and redefine the
Chiellini integrability condition in relativistic form. Then we will deduce the related metric
for damped systems and define its contact Hamiltonian structure.

4.2 Preliminary: Relativistic Mechanics

Here, we shall describe relativistic formulation first for free particle, then for classical static
curved spaces with scalar potentials. The general space-time metric for curved spaces in the
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locality of potential sources can be formulated by defining (4.1.2) as a perturbation around
the flat space-time metric (4.1.1) that asymptotically vanishes towards infinity:

gµν(x) = ηµν + hµν(x) lim
x→∞

hµν(x) = 0 (4.2.1)

This is necessary to ensure that the metric is asymptotically flat at large distances from the
potential field source.

lim
x→∞

ds2 = lim
x→∞

gµν(x) dxµdxν = ηµνdx
µdxν

After that, we will discuss the Hamiltonian mechanical description. Then we shall explore
various approximations and the modified results that follow.

4.2.1 Flat space

In special relativity, we are discussing free particle mechanics U(x) = 0. This means that
the metric describes flat space (4.1.1):

ds2 = ηµνdx
µdxν = c2dt2 −

∣∣dx∣∣2
from which the Lagrangian derived is:

L̃ = −mc

√(
ds

dτ

)2

= −mc
√
c2ṫ2 −

∣∣ẋ∣∣2 = −mc2ṫ

√
1−

(
|v|
c

)2

where v =
ẋ

ṫ
.

Alternatively, we can define the reparameterized Lagrangian L from the geometric action as:

S =

∫ 2

1

dτ L̃ = −mc2

∫ 2

1

dt
√

1− β2 =

∫ 2

1

dt L, where β =
|v|
c
,

⇒ L = −mc

√(
ds

dt

)2

= −mc2
√

1− β2.

This results in the relativistic momentum and energy given as:

pµ =
∂L̃
∂ẋµ

=


p =

∂L̃
∂ẋ

=
mv√
1− β2

= mvγ

E = −∂L̃
∂ṫ

=
mc2√
1− β2

= mc2γ =
p.ẋ− L̃

ṫ
= p.v − L

where, we have designated a reparameterizing factor:

γ =
1√

1− β2
. (4.2.1.1)

from which, we have the familiar equations for relativistic energy:

E2 = ηµνpµpν = |p|2c2 +m2c4. (4.2.1.2)

Furthermore, the singularity that occurs when |v| = c in the denominator in (4.2.1.1), ensures
that the speed of light is never exceeded, establishing is as the physical upper limit of velocity
in flat spaces as elaborated in [178, 179]. This concludes the basics of flat space. From here
on, we will use the alternative convention involving mechanical systems parameterized wrt
time. Next we shall look at curved spaces with scalar potentials.
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4.2.2 Curved space for single scalar potential

When considering mechanics on classical static curved spaces, where the source of space-time
curvature is one scalar potential source U(x) 6= 0, the metric based arc length can also be
used for curved spaces by including the potential U(x) into the metric as a specific version
of (4.1.2) following Gibbons’ prescription [17, 7] as shown below:

ds2 = g00(x)c2dt2 −
∣∣dx∣∣2 where g00(x) = 1 +

2U(x)

mc2
. (4.2.2.1)

where the potential U(x) is a factor in the only non-zero perturbative term h00(x) of the
temporal metric term g00(x) that vanishes asymptotically, while hij(x) = 0 ∀ i, j = 1, 2, 3.
The relativistic action S and Lagrangian L are:

S =

∫ 2

1

dτ L L = −mc

√(
ds

dτ

)2

= −mc
√
g00(x)c2ṫ2 − |ẋ|2.

If we include the potential linearly as a perturbation into the metric, then we have

L = −mc2

√(
1 +

2U(x)

mc2

)
ṫ2 −

(
|ẋ|
c

)2

= −mc2ṫ

√
1− 2

mc2

(
m|v|2

2
− U(x)

)
.

Now, we are familiar with the traditional non-relativistic or classical Lagrangian

L = T − U =
m|v|2

2
− U(x), T =

m|v|2

2
. (4.2.2.2)

Thus, the relativistic Lagrangian L is given by:

L = −mc

√(
ds

dτ

)2

= −mc2

√
1− 2L

mc2
. (4.2.2.3)

Under the circumstances that we are dealing with a stationary free particle, we can define
the ground-state relativistic Lagrangian as follows:

v = 0

U(x) = 0

}
⇒ L = 0 ⇒ L = L0 = −mc2.

Thus, we can re-write the relativistic Lagrangian as follows:

L = L0

√
1 + 2

L

L0

. (4.2.2.4)

showing that the classical Lagrangian L is embedded within the relativistic Lagrangian L.
Furthermore, we can say that we recover flat space (4.2.1.2) when g00(x) = 1 ie. (U(x) = 0).

ds

dt
= c

√
1 + 2

L

L0

⇒ Γ−1 =
dt̃

dt
=

√
1 + 2

L

L0

U=0−−→ γ−1 =

√
1−

(
|v|
c

)2

. (4.2.2.5)

while the relativistic momenta are clearly Lorentz-covariant, with t̃ being the proper time in
the particle frame.

pµ =
∂L
∂ẋµ

=


p =

∂L
∂ẋ

= mvΓ

E = −∂L
∂ṫ

= mc2g00(x)Γ =
p.ẋ− L̃

ṫ

(4.2.2.6)
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From the momenta (4.2.2.6), we can see that the singularity that occurs when Γ−1 = 0
establishes a different physical upper limit for the velocity of a particle:

1 + 2
L

L0

= 0 ⇒ g00(x)c2ṫ2 − |ẋ|2 = 0 ⇒ |v| =
∣∣∣∣dxdt

∣∣∣∣ = c
√
g00(x).

which is less than the speed of light c since g00(x) < 1, (U(x) ≤ 0 for gravitational poten-
tials). This deformation of the relativistic 4-momentum as a consequence of the change of
the speed limit, is due to the change in length contraction and time- dilation due to the
gravitational potential under a local Lorentz transformation.

Under the approximation L << L0, binomially expanding (4.2.2.4) :

L L<<mc2=−L0−−−−−−−−→ L0

(
1 +

L

L0

)
= L+ L0. (4.2.2.7)

Thus, in the non-relativistic limit, L given by (4.2.2.2) will suffice to produce the equations
of motion. One can alternatively say that the effective classical Lagrangian directly derived
from the metric (4.2.2.1) is

L L<<mc2=−L0−−−−−−−−→ −mc2

(
1− L

mc2

)
= L−mc2 = −m

2

(
ds

dt

)2

− mc2

2
,

Leff = −m
2

(
ds

dt

)2

=
m

2

(∣∣ẋ∣∣2 − c2g00(x)
)

g00(x) = 1 +
2U(x)

mc2
. (4.2.2.8)

We shall now proceed to analyze the relativistic equations of motion.

Relativistic equations of motion

Now we shall turn our attention to formulating of the equations of motion. The Euler-
Lagrange equation is given by:

d

dτ

(
∂L
∂ẋi

)
=
∂L
∂xi

.

when applied to (4.2.2.4), we get the relativistic equation of motion:

d

dt
(mΓv) = −Γ∇U(x).

d

dt
(mΓv) = −Γ∇U(x). (4.2.2.9)

then we can write using (4.2.2.5): ṽ =
dx

dt̃
=
dt

dt̃
v = Γv, making (4.2.2.9) into

m
d2x

dt̃2
= Γ

d

dt
(mΓv) = −Γ2∇U(x). (4.2.2.10)

If we expand Γ2 in this equation, we will get:

Γ2 =

(
1 + 2

L

L0

)−1

= 1− 2
L

L0

+ (−2)2

(
L

L0

)2

+ ....

,

∴ m
d2x

dt̃2
= −∇U(x) + 2

L

L0

∇U(x)− .....
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which is the equation of motion with additional terms associated with the force function.
Alternatively, we can say that on applying the Euler-Lagrange equation to the relativistic
Lagrangian (4.2.2.4), we will get:

L = L0

√
1 + 2

L

L0

,
∂L
∂vi

=
L0

2L
∂L

∂vi
∂L
∂xi

=
L0

2L
∂L

∂xi
,

d

dt

(
∂L
∂vi

)
=
L0

2L
d

dt

(
∂L

∂vi

)
−
(
∂L

∂vi

)
L3

0

2L3

dL

dt
.

Recalling (4.2.2.5), and writing Γ =
L0

L
according to (4.2.2.4), we get from the Euler-

Lagrange equation d
dt

(
∂L
∂vi

)
− ∂L

∂xi
= 0

L0

2L

[
d

dt

(
∂L

∂vi

)
− ∂L

∂xi

]
−
(
∂L

∂vi

)
L3

0

2L3

dL

dt
= 0,

∴

[
d

dt

(
∂L

∂vi

)
− ∂L

∂xi

]
= Γ2

(
∂L

∂vi

)
dL

dt
Γ =

L0

L
. (4.2.2.11)

Thus, we have a relativistic deformation (4.2.2.11) of the Euler-Lagrange equation for the
classical Lagrangian L derived by applying the original Euler-Lagrange equation to the rel-
ativistic Lagrangian L.

Under non-relativistic limits, Γ ≈ 1, (4.2.2.10) becomes the more familiar form of the
equation of motion given below that directly derive from Euler-Lagrange equations applied
upon (4.2.2.2):

m
d2x

dt2
= −∇U(x). (4.2.2.12)

Similarly, the Euler-Lagrange equation that derives from the effective Lagrangian (4.2.2.8)
is:

ẍ = −c
2

2
∇g00(x) ≡ − 1

m
∇U(x). (4.2.2.13)

which is equivalent to (4.2.2.12). Under the circumstances that one has either the relativistic
or classical equations of motion, there is an algorithm to deduce the space-time metric that
generates such dynamics:

1. Convert the relativistic equation to the non-relativistic version (4.2.2.12) (with γ = 1).

2. Deduce U(x) from the non-relativistic equation (4.2.2.12).

3. Use U to reproduce the space-time metric according to (4.2.2.8).

This algorithm allows us to formulate a curved space-time metric that reproduces the dy-
namics described by the equation of motion considered. If the force is not gravitational in
nature, it essentially produces the equivalent curved space-time that can act as a gravita-
tional substitute for the mechanical system that imitates its observed motion classically.
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Conserved Quantity

We shall now regard a conserved quantity deduced from (4.2.2.10) comparable to the Hamil-
tonian and the geodesic equation of motion. The conserved quantity in question is:

∴ K2 =

(
1 +

2U

mc2

)2

1− 2L

mc2

= (Γg00(x))2 . (4.2.2.14)

where K is essentially a multiple of the relativistic energy given by (4.2.2.6). Applying
(4.2.2.14) to (4.2.2.5), we can say that

Γ2 =

(
dt

dt̃

)2

=
1

1− 2L
mc2

=
K2(

1 + 2U
mc2

)2 .

Along a geodesic, the equation of motion in the particle frame (4.2.2.10) can be re-written
as

m
d2x

dt̃2
= −

(
dt

dt̃

)2

∇U(x) = −mc
2

2

K2(
1 + 2U

mc2

)2∇
(

1 +
2U

mc2

)
=
mc2

2
K2∇

(
1 +

2U

mc2

)−1

,

∴
d2x

dt̃2
=
K2c2

2
∇ (g00(x))−1 =

c2

2
∇
(
Γ2g00(x)

)
. (4.2.2.15)

which is one way of writing the relativistic equation of motion. If we are consider Lorentz
transformations of space-time event intervals, and g00 = g00(x), we can say that

dt −→ dt̃ =
dt̃

dt
dt ⇒ g00 −→ g̃00 =

(
dt̃

dt

)−2

g00 = Γ2g00(x).

which lets us write the Lorentz-covariant equation of motion:

d2x

dt̃2
=
c2

2
∇g̃00(x). (4.2.2.16)

Now we shall reproduce the known and familiar relativistic phenomena of time dilation and
gravitational red-shift from this formulation as a test.

4.2.3 Relativistic Hamiltonian mechanics in curved spaces

The Hamiltonian formulation of classical mechanics is very useful, not just for its geometrical
properties, but also for enabling extension of the classical theory into the quantum context via
standard quantization. Having described a relativistic Lagrangian formulation for mechanics
in the presence of a scalar potential, it is natural to also consider the Hamiltonian formulation.

Referring to (4.2.2.6), the relativistic energy for curved spaces is:

E =
[
mc2 + 2U(x)

]
Γ E2 = g00(x)

(
|p|2c2 +m2c4

)
. (4.2.3.1)

This would effectively make the Hamiltonian H:

H =
√
g00(x)

√
|p|2c2 +m2c4.
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and the Hamilton’s equations of motion for g00(x) = 1 +
2U(x)

mc2
:

ẋ =
∂H
∂p

=
√
g00(x)

cp√
|p|2 +m2c2

,

ṗ = −∂H
∂x

= − ∇U(x)√
g00(x)

√(
|p|
mc

)2

+ 1.

(4.2.3.2)

Such formulation has been applied to study the relativistic version of the Quantum Harmonic
Oscillator [180]. In the following section, we will elaborate on the Lorentz transformation
operation for such metrics.

4.3 A modified Local Lorentz Transformation

An important issue that emerges is the invariance of such metrics under Lorentz transfor-
mations. The Lorentz transformation we are familiar with applies only to special relativity,
where we deal with free particles.

The conventional Lorentz boost of co-ordinates x of frame F to x̃ of frame F̃ is:

ct̃ = γct− γβx
x̃ = γβct− γx

x = vt,

γ =
1√

1− β2
, β =

VF̃F
c

. (4.3.1)

where v is the constant velocity of the particle in frame F , and VF̃F is the speed of frame F̃
with respect to frame F . A better way to write (4.3.1) this locally is to replace: xµ → dxµ

under which the space-time metric is invariant.

c dt̃ = γ c dt− γβ dx
dx̃ = γβ c dt− γ dx

, (4.3.2)

ds̃2 = c2dt̃2 − dx̃2 = ds2 = c2dt2 − dx2.

The scenario we are dealing with in this case involves a particle under the influence of a
potential field. The metric is easily invariant under rotations in the presence of spherically
symmetric potentials, which leaves only boosts to be considered. Due to the presence of a
potential, we are required to use a modified Lorentz boost operation, which we shall briefly
derive here. The Lorentz boost equations are:

c dt̃ = Λ0
0 c dt+ Λ0

1 dx

dx̃ = Λ1
0 c dt+ Λ1

1 dx
Λ =

(
Λ0

0 Λ0
1

Λ1
0 Λ1

1

)
. (4.3.3)

If we consider a Lorentz transformation to the particle frame, we should have dx̃ = 0, which
means that from the second equation of (4.3.3), we have:

Λ1
0

Λ1
1

=
v

c
= β. (4.3.4)

Furthermore, the determinant of the matrix Λ must be unity to preserve volume elements
spanned by 4-vectors.

Λ0
0Λ1

1 − Λ0
1Λ1

0 = 1. (4.3.5)
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Now, demanding that the metric be invariant under the transformation gives us another rule:

ΛtGΛ = G ⇒ Λt = GΛ−1G−1, G =

(
g00(x) 0

0 −1

)
, g00(x) = 1 +

2U(x)

mc2
,

⇒
(

Λ0
0 Λ1

0

Λ0
1 Λ1

1

)
=

(
g00(x) 0

0 −1

)(
Λ1

1 −Λ0
1

−Λ1
0 Λ0

0

)(
(g00(x))−1 0

0 −1

)
,

=

(
Λ1

1 g00(x)Λ0
1

(g00(x))−1 Λ1
0 Λ0

0

)
,

⇒ Λ0
0 = Λ1

1, Λ1
0 = g00(x)Λ0

1. (4.3.6)

Combining the equations (4.3.4) and (4.3.6) into (4.3.5) gives us:(
Λ1

1

)2 − (g00(x))−1 (Λ1
0

)2
=
(
Λ1

1

)2 (
1− (g00(x))−1 β2

)
= 1,

Λ0
0 = Λ1

1 =
1√

1− (g00(x))−1 β2

=
√
g00(x)Γ,

Λ1
0 = g00(x)Λ0

1 =
√
g00(x)βΓ.

(4.3.7)

Thus, using (4.3.7), the modified Lorentz boost matrix (4.3.3) is given by:

Λ =

(
Γ
√
g00 −βΓ

(√
g00

)−1

−βΓ
√
g00 Γ

√
g00

)
, (4.3.8)

ds̃2 =

(
1 +

2U(x)

mc2

)
c2dt̃2 − dx̃2 = ds2 =

(
1 +

2U(x)

mc2

)
c2dt2 − dx2.

Thus, we have a modified local Lorentz transformation that preserves the metric. For a 3+1
space-time, the modified local Lorentz boost matrix between one co-ordinate and time would
be written as:

Λ =


Γ
√
g00 −βΓ

(√
g00

)−1
0 0

−βΓ
√
g00 Γ

√
g00 0 0

0 0 1 0
0 0 0 1

 . (4.3.9)

The local nature of this transformation should not be surprising since according to the
Equivalence principle, at any point on a curved manifold, there always exists a diffeomor-
phism that transforms it locally into a flat manifold. This means that alternatively, within
the locality of that point in the local inertial frame, we can transform the problem into
special relativity and apply the regular Lorentz transformation (4.3.2).

Naturally, it is not possible to perform a global co-ordinate transformation like (4.3.1).
In fact, we must understand that (4.3.1) derives from (4.3.2) via integration, and not the
other way around via differentiation. This is because special relativity, as the name implies,
describes a special case where space-time is isotropic due to the absence of any potentials
and any global co-ordinates are described as xµ =

∫ 2

1
dτ ẋµ = ẋµτ .
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4.3.1 Time-dilation and length contraction

One of the reasons a speed limit exists is the Minkowskian signature of space-time, which
allows null geodesics for non-null space-time intervals. This results in phenomena such as
time-dilation and length contraction. The inclusion of a gravitational potential results in
a modification of such phenomena, just as it has resulted in modification of the Lorentz
transformation.

Since we are discussing a modified local Lorentz transformation (4.3.9), let us define the
local co-ordinates in the neighbourhood of x where g00 is roughly constant:

x −→ x+ χ, t −→ t+ τ. (4.3.1.1)

Now consider a problem where in a frame S, a stationary particle lies at position x = l along
the x-axis, and S moves at a velocity v = βc along the x-axis wrt an observer in frame S̃.

Figure 4.1: The Lorentz frames for time dilation and length contraction

Using (4.3.1.1) the local Lorentz transformation equations from S to S̃ are:

c dτ̃ = Γ
√
g00(x) c dτ + βΓ

(√
g00(x)

)−1

dχ

dχ̃ = βΓ
√
g00(x) c dτ + Γ

√
g00(x) dχ

(4.3.1.2)

Since the particle is stationary in S (dχ = 0), the first equation of (4.3.1.2) gives us:

dτ̃ = Γ
√
g00(x)dτ ⇒ dτ̃ = Γ

√
g00(x)dτ . (4.3.1.3)

Integration of (4.3.1.2) including constants of integration yields:

cτ̃ = Γ
√
g00(x) c

(∫
dτ + τ0

)
+ βΓ

(√
g00(x)

)−1
(∫

dχ+ l

)
χ̃ = βΓ

√
g00(x) c

(∫
dτ + τ0

)
+ Γ

√
g00(x)

(∫
dχ+ l

) (4.3.1.4)

Since
∫
dχ = 0 in the particle frame S, we set the following boundary conditions∫

dτ = 0 ⇒ τ̃ =

∫
dτ̃ = 0 ⇒ cτ0 = −β (g00(x))−1 l. (4.3.1.5)
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and using (4.3.1.5), the 2nd equation of (4.3.1.4) gives us:

χ̃ = βΓ
√
g00(x) c

∫
dτ +

(√
g00(x)

)−1 (
g00(x)− β2

)
Γl,

Now since the particle is in motion in S̃, it moves from its starting position χ̃0 = l̃ with the
velocity of frame S wrt S̃. Thus, using (4.3.1.3), the contracted length l̃ is:

χ̃ =

∫
dχ̃+ χ̃0 = βc

∫
dτ̃ + l̃ = βcΓ

√
g00(x)

∫
dτ + l̃,

⇒ l̃ = χ̃− βc
∫
dτ̃ =

(√
g00(x)

)−1 (
g00(x)− β2

)
Γl =

(√
g00(x)

)−1

Γ−1l,

l̃ =
(√

g00(x)
)−1

Γ−1l. (4.3.1.6)

For flat space, we set g00 = 1, and Γ −→ γ, which should restore the original time-dilation
and length-contraction rules of special relativity for a free particle.

Due to the lowered speed limit in comparison to the speed of light for special relativ-
ity, time intervals shall dilate and length intervals shall contract further in presence of a
gravitational potential field.

4.3.2 Gravitational redshift

An alternative way to arrive at the time-dilation formula (4.3.1.3) is to write the metric in

its two equivalent forms in the two frames S̃ and S:

ds2 = c2dτ̃ 2

[
1 + 2

L

L0

]
= g00 c

2dτ 2 ⇒ dτ̃ = Γ
√
g00dτ.

Thus, we can see from (4.2.2.5) that time dilation will occur under circumstances of either
motion, or presence in a potential field, or due to both. Comparison to an equivalent metric
in a frame in flat space without motion, we have

δt̃ = δt

√
1 + 2

L

L0

.

If we consider free particle motion, we can see that:

U(x) = 0 ⇒ δt̃ = δt

√
1−

(
|v|
c

)2

. (4.3.2.1)

On the other hand, for stationary observation, time dilation is caused by potential fields:

v = 0 ⇒ δt̃ = δt

√
1 +

2U(x)

mc2
. (4.3.2.2)

This is confirmed by the theories of gravitational redshift that occurs as monochromatic light
of a certain frequency in free space enters a gravitational field. If the time period of the light
frequency in presence of a gravitational field is given by T , then according to (4.3.2.2)

U = −GMm

r
Ur=∞ = 0,
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T ≡ δt ⇒ T0 = T(U=0) ≡ δt̃,

T0 = T

√
1− 2GM

c2r
⇒ T =

T0√
1− 2GM

c2r

. (4.3.2.3)

If we define the Event Horizon radius as r0 = GM
c2

, then the new frequency in the presence
of a gravitational field according to (4.3.2.3) is given by:

ν =
1

T
=

1

T0

√
1− 2

r0

r
ν∞ =

1

T0

,

ν = ν∞

√
1− 2

r0

r
⇒ ∆ν = ν∞

(√
1− 2

r0

r
− 1

)
. (4.3.2.4)

Under a weak potential limit 2U << mc2 or r0 << r, we will have:

ν ≈ ν∞

(
1 +

U(x)

mc2

)
= ν∞

(
1− r0

r

)
⇒ ∆ν ≈ U(x)

mc2
ν∞ = −r0

r
ν∞.

Furthermore, we will also have:

νr1
νr2

=

√√√√√√1− 2
r0

r1

1− 2
r0

r2

. (4.3.2.5)

which is confirmed in any literature on the topic of general relativity [181]. Next, we shall
briefly summarize the formulation of relativistic Hamiltonian mechanics on curved spaces.

4.4 Approximations and Limits

When dealing with a relativistically described system, we often are required to apply ap-
proximations and limits to conform with the established non-relativistic formulation or the
conventional relativistic formulation which uses γ instead of Γ. This will confirm if we are on
the right track in our analysis. Special relativity was formulated entirely for free particles.
Now we shall explore various ways of applying a weak potential.

4.4.1 Weak potential limit

Under the weak potential approximation, we shall consider the case where

U(x) << mc2. (4.4.1.1)

Directly from (4.2.2.10), we can write that

d2x

dt̃2
= − 1

m

(
dt

dt̃

)2

∇U(x) ≡ −c
2

2

(
dt

dt̃

)2

∇g00(x).

Applying weak potential approximation (4.4.1.1), we can say from (4.2.2.5) that

dt̃

dt
=

√
1 + 2

L

L0

≈
√

1−
(v
c

)2

= γ−1,
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∴
d2x

dt̃2
= −c

2

2
∇γ2g00(x).

and since we are considering Lorentz transformations of space-time event intervals, and
g00 = g00(x), we can say that

dt −→ dt̃ =
dt̃

dt
dt ⇒ g00 −→ g̃00 =

(
dt̃

dt

)−2

g00,

∴ g̃00(x) = γ2g00(x).

which lets us write the Lorentz-covariant equation of motion:

d2x

dt̃2
= −c

2

2
∇g̃00(x) ≡ − 1

m
∇Ũ(x). (4.4.1.2)

Now, we shall look at an alternate formulation with weak potentials.

4.4.2 Semi-relativistic formulation

Another way to describe the non-relativistic approximation U(x) << mc2, |v| << c, of the
metric (4.2.2.4) using the expression of γ from (4.2.2.5) is:

L = −mc2

√(
1− |v|

2

c2

)
+

2U

mc2
= −mc2

√
γ−2 +

2U

mc2
= −mc2γ−1

√
1 +

2U

mc2
γ2.

Binomially expanding the expression within the square-root gives us:

L ≈ −mc2γ−1

(
1 +

U

mc2
γ2

)
= −mc2γ−1 − Uγ,

∴ L ≈ −mc2γ−1 − Uγ. (4.4.2.1)

which is different from the form of the Lagrangian employed by Goldstein [173]. However,
we must keep in mind that upon applying it into Euler-Lagrange equations, we get the
semi-relativistic equation of motion:

m
d

dt
(γv) = −γ∇U multiply γ−−−−−−→ m

d2x

dt̃2
= −γ2∇U. (4.4.2.2)

which is the same equation of motion given by (4.4.1.2). Another approximation we can
employ here is based on the comparison of the magnitude of factors paired with γ−1 and γ in
(4.4.2.1) upon binomial expansion. In simple words, if γ−1 and γ in (4.4.2.1) are expanded
to 1st order:

γ−1 ≈
(
1− β2

) 1
2 ≈ 1− β2

2
, γ ≈

(
1− β2

)− 1
2 ≈ 1 +

β2

2
, where β =

|v|
c
.

we can see that higher order terms from expansion will become significant contributors
depending on the factor multiplied to it. Now we can see that for weak potentials

mc2 >> U(x).
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This means that at least 1st order contribution from γ−1 will be significant in mc2γ−1. On
the other hand, the 1st order contribution fromγ will be insignificant in Uγ. This analysis
is elaborated as shown below:

∴
|v|
c

= β << 1 ⇒


mc2γ−1 ≈ m

(
c2 − |v|

2

2

)
Uγ ≈ U +

U

2
β2

. (4.4.2.3)

Clearly, we can see that in (4.4.2.3), the existence of the β2 term in the potential energy part
of (4.4.2.1) allows us to safely omit a part of of the Lagrangian for the limit β << 1. This
means that we can say:

lim
β<<1

U

2
β2 = 0 ⇒ Uγ ≈ U.

Thus, we can say that the semi-relativistic Lagrangian for low velocities can be written as:

∴ Lsr ≈ −mc2γ−1 − U. (4.4.2.4)

Now this matches the form of the semi-relativistic Lagrangian (4.1.3) employed by Goldstein
[173]. We can further proceed to say that if the same pattern of approximation is applied to
the semi-relativistic equation of motion (4.4.2.2), we shall have:

m
d2x

dt̃2
= −γ2∇U ≈ −

(
1 + β2

)
∇U.

Using the same approximation rule (4.4.2.3), we can ignore the term with β2 to write:

lim
β<<1

β2∇U = 0 ⇒ γ2∇U ≈∇U,

∴ lim
β<<1

m
d2x

dt̃2
= −∇U. (4.4.2.5)

This equation is thus nearly the same as the usual equation of motion known classically,
except for the usage of proper time t̃ in the particle frame instead of t. From this equation,
we can write a conserved quantity given as:

H =
m

2

∣∣∣∣dxdt̃
∣∣∣∣2 + U. (4.4.2.6)

As stated, this formulation shall only apply in the low velocity limit for weak potentials.
Now we shall look at the relativistic Hamiltonian formulation under weak potentials.

4.4.3 Hamiltonian formulation under weak potential

Under circumstances of a weak potential (2U(x) << mc2) and low momentum

(
|p|
mc
≈ 0

)
,

another way to write the relativistic energy (4.2.3.1) is:

E =

√
1 +

2U(x)

mc2

√
|p|2c2 +m2c4 ≈

(
1 +

U(x)

mc2

)√
|p|2c2 +m2c4,
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⇒ E ≈
√
|p|2c2 +m2c4 + U(x)

√(
|p|
mc

)2

+ 1 ≈
√
|p|2c2 +m2c4 + U(x),

∴ H = E ≈
√
|p|2c2 +m2c4 + U(x). (4.4.3.1)

Thus, the Hamilton’s equations of motion (4.2.3.2) evolve into the form presented in [172]:

ẋ =
∂H
∂p

=
cp√

|p|2 +m2c2
,

ṗ = −∂H
∂x

= −∇U(x).

(4.4.3.2)

Now we shall proceed to study the relativistic oscillator and its duality with the Kepler
system.

4.5 Bohlin-Arnold Duality

Now that we have properly described the relativistic formulation for classical mechanical
systems in a general scalar potential field, we shall now apply this formulation to two im-
portant mechanical systems frequently discussed in classical mechanics. They are the Hooke
oscillator and Kepler systems. These systems are also dual to each other via a conformal
transformation known as the Bohlin-Arnold-Vasiliev transformation.

4.5.1 Relativistic 2D Isotropic Oscillator and Kepler systems

One may ask how such a duality is a matter of concern here in the analysis of Newtonian
gravity. While the Kepler potential is known to describe Newtonian gravity, it doesn’t seem
possible to find a Hooke’s law potential that can be described as a result of curved space.
The answer lies in the way Hooke’s oscillator mechanics are applied in physics; around
equilibrium points. In the study of planetary motion, one encounters equilibrium points
known as Lagrange points that allow planets to maintain stable orbits. It is locally around
these points that one will find single particles to exhibit Hooke oscillatory motion, whose
potential function can be described as the curvature of the local space-time.

In a manner similar to (4.2.2.1), the metric of the relativistic gravitational oscillator can be
given by:

ds2 =

(
1 +

kr2

mc2

)
c2dt2 − dr2 − r2

(
dθ2 + sin2 θ dϕ2

)
. (4.5.1.1)

The Lagrangian corresponding to (4.5.1.1) according to (4.2.2.4) would be

L = −mc2

√√√√√1− 2

mc2

m
[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
2

− kr2

2

. (4.5.1.2)

For planar motion θ = π
2
, the momenta are given by:

pr = mcΓṙ pϕ = mcΓr2ϕ̇ = l,

E = prṙ + pϕϕ̇− L = mc2

(
1 +

kr2

mc2

)
Γ,

where Γ = −mc
2

L
. (4.5.1.3)
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So the relativistic radial equation would be given by:

d

dt
(Γṙ) = −

(
kr

m
− rϕ̇2

)
Γ. (4.5.1.4)

while the angular equation is given by:

dpϕ
dτ

=
d

dτ

(
r2ϕ̇Γ

)
= 0.

If we choose the proper time t̃ as parameter

Γ =
dt̃

dt
=

√
1− 2

mc2

[
m (ṙ2 + r2ϕ̇2)

2
− kr2

2

]
.

then we can modify equation (4.5.1.4) in accordance with (4.2.2.10) to:

m

[
d2r

dt̃2
− r

(
dϕ

dt̃

)2
]

= −kr
(
dt

dt̃

)2

. (4.5.1.5)

For small oscillations, according to (4.4.2.1), the relativistic Lagrangian is:

L = −mc2γ−1 − kr2

2
γ. (4.5.1.6)

The Euler-Lagrange equation of motion that we can derive from (4.5.1.6) are:

d

dt
(γv) = −ω2γx ω2 =

k

m
. (4.5.1.7)

which does not match the form presented in [171]. However, for small oscillations during
which the maximum velocities achieved are relatively small compared to the speed of light,
we shall have according to (4.4.2.4) and (4.4.2.5):

Lsr ≈ −mc2γ−1 − ω2

2
|x|2, (4.5.1.8)

dṽ

dt̃
= −ω2x, where ω2 =

k

m
. (4.5.1.9)

which matches the form presented in [171].

Again, according to (4.2.2.1), the relativistic Kepler system can be given by:

ds2 =

(
1− 2GM

rc2

)
c2dt2 − dr2 − r2

(
dθ2 + sin2 θ dϕ2

)
. (4.5.1.10)

The Lagrangian corresponding to (4.5.1.10) according to (4.2.2.4) would be

L = −mc2

√√√√√1− 2

mc2

m
[
ṙ2 + r2

(
θ̇2 + sin2 θ ϕ̇2

)]
2

+
GMm

r

. (4.5.1.11)
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For planar motion θ = π
2
, the momenta are given by:

pr = mcΓṙ pϕ = mcΓr2ϕ̇ = l,

E = prṙ + pϕϕ̇− L = mc2

(
1− 2GM

rc2

)
Γ,

where Γ = −mc
2

L
. (4.5.1.12)

So the relativistic radial equation would be given by:

d

dt
(Γṙ) = −

(
GM

r2
− rϕ̇2

)
Γ. (4.5.1.13)

while the angular equation is given by:

dpϕ
dτ

=
d

dτ

(
r2ϕ̇Γ

)
= 0 ⇒ pϕ = r2ϕ̇Γ = const.

showing that the angular momentum is conserved for radial forces. If we choose the proper
time t̃ as parameter

Γ =
dt̃

dt
=

√
1− 2

mc2

[
m (ṙ2 + r2ϕ̇2)

2
+
GMm

r

]
.

then we can modify equation (4.5.1.13) in accordance with (4.2.2.10) to:

m

[
d2r

dt̃2
− r

(
dϕ

dt̃

)2
]

= −GM
r2

(
dt

dt̃

)2

. (4.5.1.14)

For small oscillations, according to (4.4.2.1), the relativistic Lagrangian is:

L = −mc2γ−1 +
GMm

r
γ. (4.5.1.15)

The Euler-Lagrange equation of motion that we can derive from (4.5.1.15) are:

d

dt
(γv) = −GMm

r3
γx. (4.5.1.16)

Again, for relatively low velocities, we shall have according to (4.4.2.5):

Lsr ≈ −mc2γ−1 +
GMm

r
, (4.5.1.17)

dṽ

dt̃
= −GMm

r3
x. (4.5.1.18)

We shall now briefly turn our attention to the Bohlin-Arnold duality to demonstrate semi-
relativistic Kepler-Hooke duality.
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4.5.2 Semi-Relativistic Kepler-Hooke duality

The Kepler-Hooke duality established by Bohlin, Arnold and Vasiliev [36, 30] is a connection
between the two mechanical systems which according to Bertrand’s Theorem are the only
two that are possible with closed, periodic orbits. This duality is established for the classical
cases, but are not possible for the relativistic versions of the mechanical systems due to the
Γ factors involved in the equations of motion. Here, we show that it is again possible for the
semi-relativistic equations of motion given by (4.5.1.9) and (4.5.1.18).

The Bohlin transformation is a conformal map given by:

f : z −→ ξ = (z)2 = Reiφ ⇒ z = ξ
1
2 . (4.5.2.1)

Now we must note that another Noether invariant, the angular momentum will change form
under this transformation. We re-parameterize to preserve the form of angular momentum.

l = r2θ̇ = |z|2θ̇ = |ξ|2φ′ ⇒ |ξ|dτ̃
dt̃
θ′ = |ξ|2θ′,

∴ t̃ −→ τ̃ :
dτ̃

dt̃
= |ξ|. (4.5.2.2)

The velocity and acceleration transformation can be given using (4.5.2.1) and (4.5.2.2):

ż =
1

2

|ξ|
(ξ)

1
2

ξ′ =
1

2

(
ξ̄
) 1

2 ξ′,

z̈ =
1

2
|ξ| d
dτ̃

{(
ξ̄
) 1

2 ξ′
}

=
1

2

|ξ|2

(ξ)
1
2

ξ′′ +
1

4
(ξ)

1
2 |ξ′|2.

Thus, the semi-relativistic equation of motion for oscillators (4.5.1.9) eventually becomes:

m

{
1

2

|ξ|2

(ξ)
1
2

ξ′′ +
1

4
(ξ)

1
2 |ξ′|2

}
= −k (ξ)

1
2 ,

⇒ ξ′′ = −
(

1

2
|ξ′|2 +

2k

m

)
ξ

|ξ|2
. (4.5.2.3)

Using the conserved quantity H from (4.4.2.6) for the oscillator system

H =
m

2
|ż|2 +

k

2
|z|2 =

m

4

(
|ξ′|2

2
+

2k

m

)
|ξ|.

we can complete the transformation (4.5.2.3) using
(
|ξ′|2

2
+ 2k

m

)
= 4H

m
1
|ξ| = κ 1

|ξ| :

∴ ξ′′ = −
(
|ξ′|2

2
+

2k

m

)
ξ

|ξ|2
≡ −κ ξ

|ξ|3
. (4.5.2.4)

showing that the transformation restores the central force nature of the system and produces
the complex version of the Kepler equation (4.5.1.18).
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4.6 Relativistic Lienard-type oscillator

In the study of dynamical systems, the Lienard system is a 2nd order differential equation
named after French physicist Alfred-Marie Liénard [182]. It is a very generalized way to
describe 1-dimensional motion under the influence of scalar potential and damping effects.
Such differential equations were used to model oscillating circuits for applications in radios
and vacuum tubes. For oscillatory systems, Liénard’s Theorem, under certain assumptions
assures uniqueness and existence of a limit cycle for the system.

The equation of a damped 1-dimensional relativistic harmonic oscillator is:

γ3ẍ+ αγẋ+ ω2x = 0 γ =

(
1− ẋ2

c2

)− 1
2

.

In contrast, the damped relativistic Lienard equation is:

γ3ẍ+ γf(x)ẋ+ g(x) = 0 γ =

(
1− ẋ2

c2

)− 1
2

. (4.6.1)

Under reparametrization t −→ dt̃ = γ−1dt, we have x′ = dx
dt̃

= γ dx
dt

= γẋ, letting us write:

d

dt
(γẋ) = γẍ+ γ3 ẋ

2

c2
ẍ = γ3ẍ

(
1− ẋ2

c2
+
ẋ2

c2

)
= γ3ẍ,

∴ γ3ẍ =
d

dt
(γẋ) =

d

dt
x′ = γ−1 d

dt̃
x′ = γ−1x′′.

Thus, under reparametrization, (4.6.1) becomes

x′′ + γ [f(x)x′ + g(x)] = 0. (4.6.2)

Remember that

γ−2 = 1−
(
ẋ

c

)2

= 1− γ−2

(
x′

c

)2

⇒ γ =

√
1 +

(
x′

c

)2

.

Thus, when
x′

c
−→ 0, we will have γ −→ 1, which is the same as when

ẋ

c
−→ 0.

4.6.1 Integrability and Relativistic Chiellini condition

Now, the relativistic Chiellini condition is given by:

d

dx

(
g

f

)
= −α (1 + α) γf(x). (4.6.1.1)

Thus, using (4.6.1.1), and using the integrating factor Ω =
∫ t̃
dτ γf(x), we can rewrite

(4.6.2) as:

x′′ + γf(x)x′ − 1

α (1 + α)

(
g

f

)
d

dx

(
g

f

)
= 0. (4.6.1.2)

⇒ 2eΩ
[
x′x′′ + γf(x) (x′)

2
]
− 2eΩ

α (1 + α)

(
g

f

){
d

dx

(
g

f

)
x′
}

= 0,
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⇒ d

dt̃

[(
eΩ(x′)2

)
− eΩ

α (1 + α)

g

f
x′ − eΩ

α (1 + α)

(
g

f

)2
]

+
1

α (1 + α)

(
g

f

)[
d

dt̃

(
eΩx′

)
+

(
g

f

)
deΩ

dt̃

]
= 0.

Now, using the Chiellini condition (4.6.1.1), and referring to (4.6.2) we can see that

d

dt̃

(
eΩx′

)
+

(
g

f

)
deΩ

dt̃
= eΩ

[
x′′ +

{
x′ +

(
g

f

)}
(γf(x))

]
,

= eΩ [x′′ + γ (f(x)x′ + g(x))] = 0,

∴
d

dt̃

[
eΩ

{
(x′)2 − 1

α (1 + α)

g

f

(
x′ +

g

f

)}]
= 0.

Thus, we have a conserved quantity given by

I = eΩ

[
γ2(ẋ)2 − 1

α (1 + α)

g

f

(
γẋ+

g

f

)]
, Ω =

∫ t̃

dτ γf(x). (4.6.1.3)

Thus, we have a conserved quantity for a relativistic Liénard system. To solve it for the
damped oscillator, we write f(x) = κ, g(x) = x.

4.6.2 Metric and Lagrangian

To deduce the metric from the relativistic equation of motion for a damped system (4.6.1),
we shall execute a more elaborate 5-step procedure than the 3-step procedure for undamped
systems, given by:

1. Convert the equation (4.6.1) to the non-relativistic version (with γ = 1).

ẍ+ αẋ+
1

m
∇U = 0. (4.6.2.1)

2. Determine the reparametrization factor eΩ by converting (4.6.2.1) to the form (4.2.2.12).

d

dt

(
eΩẋ

)
+

eΩ

m
∇U = 0, Ω =

∫ t

dt′ α,

⇒ x′′ = −e2Ω

m
∇U = −c

2e2Ω

2
∇g00, x′ = eΩẋ, dτ = e−Ωdt.

(4.6.2.2)

3. Deduce the undamped potential U from (4.6.2.2) by factoring out e2Ω.

4. Comparing (4.6.2.2) to (4.2.2.13), we can formulate the damped effective Lagrangian
Ld for reparameterized time τ , just as (4.2.2.8) can be derived from (4.2.2.13).

x′′ = −c
2e2Ω

2
∇g00 −→ Ld =

m

2

[∣∣x′∣∣2 − e2Ωc2g00(x)
]
,

Ld =
m

2
e2Ω
[∣∣ẋ∣∣2 − c2g00(x)

]
. (4.6.2.3)

125



5. Deduce the classical damped effective Lagrangian Led from (4.6.2.3) by multiplying
e−Ω, and write the damped metric ds2

d from it.

relativistic : dS = dτ L = e−Ωdt L
effective classical : dSeff = dτ Ld = e−Ωdt Ld = dt Led

Ld = −m
2

(
ds

dτ

)2

= −m
2

e2Ω

(
ds

dt

)2

,

Led = e−ΩLd = −m
2

e−Ω

(
ds

dτ

)2

= −m
2

(
dsd
dt

)2

=
m

2
eΩ
[∣∣ẋ∣∣2 − c2g00(x)

]
,

ds2
d = eΩ

[
c2g00(x)dt2 − |dx|2

]
. (4.6.2.4)

Looking back at (4.6.1), we can take the non-relativistic version of the equation and say that

ẍ+ f(x)ẋ+ g(x) = 0,

∴
d

dt

(
eΩẋ
)

= −eΩg(x) Ω =

∫ t

dt̃ f(x).

If we reparameterize as dτ = e−Ωdt then we will have using the non-relativistic version of
Chiellini condition (4.6.1.1)

d

dx

(
g

f

)
= −α (1 + α) f(x),

d2x

dτ 2
= −e2Ωf(x)

g

f
=

e2Ω

2α (1 + α)

d

dx

[(
g

f

)2
]

= −c
2

2

d

dx

[
e2Ω

{
1− 1

c2α (1 + α)

(
g

f

)2
}]

,

∴
d2x

dτ 2
= −c

2

2

d

dx

[
e2Ω

{
1− 1

c2α (1 + α)

(
g

f

)2
}]

. (4.6.2.5)

Arguing that x = x(t) and from (4.6.2.5) we have the undamped potential U(x) and g00(x):

U(x) = − m

2α (1 + α)

(
g

f

)2

⇒ g00(x) =

[
1− 1

c2α (1 + α)

(
g

f

)2
]
. (4.6.2.6)

Using (4.6.2.6), the damped effective Lagrangian according to (4.6.2.3), is given from (4.6.2.5)
as:

Ld =
me2Ω

2

[(
dx

dt

)2

− c2

{
1− 1

c2α (1 + α)

(
g

f

)2
}]

.

Now, we can rewrite this as

⇒ Led = e−ΩLd =
m

2
eΩ

[(
dx

dt

)2

− c2

{
1− 1

c2α (1 + α)

(
g

f

)2
}]

. (4.6.2.7)

and finally, the metric with drag factor from (4.6.2.7) is (4.6.2.4) given by:(
ds

dt

)2

= − 2

m
Led ⇒ ds2 = eΩ

{
1− 1

c2α (1 + α)

(
g

f

)2
}
c2dt2 − eΩdx2. (4.6.2.8)
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where we can restore the integrating factor Ω back to the relativistic version Ω =
∫ t
dt̃ γf(x).

This further goes to show that damped mechanical systems can be described by a metric
that is spatially isotropic with a non-unity co-efficient. Furthermore, if it is a solution of
Einstein’s equations, then we should have:

e−2Ω = 1− 1

c2α (1 + α)

(
g

f

)2

.

so from (4.6.2.8) we get the metric:

ds2 =
c2dt2

eΩ
− eΩdx2.

This topic will be elaborated upon in greater detail in another project where such spaces are
studied as damped mechanical systems. 1

1Contact Hamiltonian mechanics [183] extend symplectic Hamiltonian mechanics [184], geometrically
describing non-dissipative and dissipative systems, eg.: thermodynamics [185], mesoscopic dissipative me-
chanical systems [186], and mechanical systems drawing energy from a reservoir.

The Hamiltonian is effectively provided by I in (4.6.1.3). If we define a new variable s, as in [187], ignoring
the decay-countering factor eΩ gives the decaying Hamiltonian embedded in (4.6.1.3):

s := − 1

α (α+ 1)

(
g

f

)
γẋ, H = (γẋ)2 − 1

α (1 + α)

(
g

f

)2

+ s.

From the relativistic non-decaying Lagrangian of (4.6.2.8), the relativistic momentum under weak potential
approximates to p ≈ γẋ, which we can replace in s and H defined above to rewrite them, from which we can
see that

ṡ = f(x)

[
∂H

∂p
p−H

]
.

However, as stated in [187], unless f(x) = const, we cannot recast the Liénard equation in contact form,
which is simply the damped oscillator.
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Chapter 5

Comments and Discussions

5.1 Summary

5.1.1 Chapter 2

The Jacobi metric formulation reduces dynamics from autonomous Lagrangian and Hamil-
tonian perspective on a n + 1 dimensional space with potential function to an equivalent
free particle geodesic in n dimensions. All aspects of integrability and first integrals are
preserved under such reductions. The relativistic Jacobi metric was shown to derive from
the space-time curve, preserving angular momentum as a conserved quantity, and acting as
a conformally flat metric for cases like Kepler or n-body problems.

Although the relativistic Jacobi metric appears different from the classical version derived
from the classical Lagrangian and Hamiltonian, applying non-relativistic approximations to
the relativistic version shows that the two forms are equivalent. Thus, we deduced the
Jacobi metric in relativistic and non-relativistic form for various metrics: Taub-NUT space,
Bertrand space-time and the Kerr space-time. The Hamiltonian and Lagrangian of Jacobi
metrics possess a conformal factor and the classical Hamiltonian equates to unity. Such a
procedure can cast the TeVeS theory into the form of a Kaluza-Klein construction [188].

So far, the Jacobi-metric could be formulated only for autonomous systems due to a
conserved quantity, the Hamiltonian, conjugate to the cyclical co-ordinate, time. However,
such convenience is denied for time-dependent systems. In such circumstances, the Eisenhart-
Duval lift proves useful, by providing a dummy variable along an extra dimension, and thus,
a conserved quantity. This gives us a momentum equation from which we can define a metric
for the unit momentum sphere, and thus, the Jacobi metric for time-dependent systems.

In the study of the Kepler problem, such a transformation for a particular energy level,
combined with Bohlin’s canonical transformation, converts the isotropic oscillator to the
Kepler system. Houri’s canonical transformation is found to be incomplete without Milnor’s
momentum inversion map, which preserves the form of geodesic flows as identical to that
of the Kepler problem. Alternatively, when the Kepler equation is parameterized with an
eccentric anomaly, the resulting dynamics was shown to resemble the motion of a perturbed
oscillator.

Quite a few details of Jacobi-Maupertuis formulation have been less studied. For example,
the Maupertuis principle can be used in the construction of the theory of many-valued
functionals, which arises naturally in the study of the motion of charged particle in a scalar
potential field and magnetic field [189]. It would be interesting to extended this project to
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the study of integrable magnetic geodesic flows [32, 33]. Recently this has been extended
in [190] to present a modern outlook to describe the Maupertuis principle’s mechanism
using classical integrable dynamical systems. This mechanism yields integrable geodesic
flows and integrable systems associated with curved spaces. In fact other related topics like
the formulation of the Jacobi metric for time-like geodesics and its application to curved
space-time [6], applications of geodesic instabilities for the planar gravitational three-body
problem [191] should get more attention. It would be fascinating to apply this analysis to
the generalized MICZ-Kepler problem.

5.1.2 Chapter 3

Here, we start by applying the bottom-up approach of emergent gravity to (Euclidean)
Schwarzschild solution, which we dub as emergent Schwarzschild, describing a Ricci-flat,
although not a Kähler manifold, thus, not admitting a natural symplectic structure. The
best alternative (as utilized by Etesi and Hausel [192]), was to consider the (anti) self-dual
harmonic two-forms on the space and define a Poisson algebra determined by the self-dual
harmonic two-form. A magnetic mass (and an electric mass) at the origin seems to violate
the Jacobi identity of the underlying Poisson algebra, which can be circumvented by going to
Euclidean signature and using Kruskal-Szekeres coordinates. Therefore, the Schwarzschild
instanton remained a challenge for the bottom-up approaches of emergent gravity.

A suitable Darboux chart was found for the emergent Schwarzschild solution, for which
the Jacobi identity is locally satisfied for the symplectic U(1) gauge fields emergent from
the metric as well as the Bianchi identity for the vector fields. We set up the Seiberg
Witten map between the commutative and non-commutative (NC) descriptions, executing a
thorough geometrical engineering for the instanton solution. The two instantons forming the
emergent Schwarzschild solution were found to belong to different gauge groups: SU(2)L and
SU(2)R, so they cannot decay into a vacuum, explaining it’s stability against perturbation,
which might be generic for any Ricci-flat four manifold as ours.

It is fascinating to investigate a charged black hole solution in this bottom-up approach
of emergent gravity. Two kinds of 4D and 2D Extremal Black Holes (EBH) are suggested to
exist in nature in [193]; the first kind, with zero entropy, is obtained by taking the extreme
limit, followed by the boundary limit starting from general non-extremal configuration, and
the second kind, which still holds the topological configuration of Non EBH (NEBH) and
satisfying BH entropy formula, is obtained by applying the limits in reverse order. These two
kinds of EBHs have different intrinsic thermodynamical properties due to solutions classified
by different topological characteristics. The Euler characteristic for the first kind is zero,
and for the second, it is 2 or 1 for 4D or 2D EBHs respectively. It will be interesting to see if
we can explain such a space-time topology change using a well-defined mechanism inspired
by the emergent gravity approach set up by one of the authors in [194].

Next, we have obtained the general Darboux-Halphen system as a reduction of the self-
dual Yang-Mills system, which can be transformed to a third-order system, resembling the
classical Darboux-Halphen system with a common additive terms. Furthermore, the trans-
formed system can be further reduced to a constrained non-autonomous, non-homogeneous
dynamical system. This dynamical system becomes homogeneous for the classical Darboux-
Halphen case, studied in the context of self-dual Einstein’s equations for Bianchi IX metrics.
A Lax pair and Hamiltonian for this reduced system is derived and the solutions for the
system are prescribed in terms of hypergeometric functions.
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Two different approaches were shown to lead up to the classical Darboux-Halphen system.
One starts from the anti-self-dual Bianchi-IX metric, while the other starts with a reduced
self-dual Yang-Mills (SDYM) equation, taking only the diagonal elements of the resulting
matrix equation. When starting with SDYM gauge fields, it is clear why we cannot always
reliably find a metric or its vierbeins that correspond to the generalized DH system. The
classical configuration is a typical prototype where it is possible, as was evident when we
could obtain it from the self-dual Bianchi-IX metric. We have computed the curvature,
confirmed the Ricci-flatness of the self-dual cases, and shown that the classical Darboux-
Halphen exhibits Ricci flow for a modified Bianchi-IX system. This system was found to
satisfy the Chazy equation as well, and is strongly related to other systems of differential
equations, such as the Ramanujan and Ramamani systems.

It is still challenging to find other integrable systems of number theoretic importance.
Another useful direction could be to compare solutions of DH type systems (3.3.1.8) and
(3.3.2.11) using moving monodromy methods. We are also trying to find interesting 1+1
or 2+1 dimensional DH type systems that are solvable using inverse scattering transform
which can be studied to uncover several widely known aspects of integrability. Other samples
could be various scalar flat Kähler metrics, namely the LeBrun metric with U(1) isometry
that contains Gibbons-Hawking, Real heaven and Burns metric as special limits were used
to test the bottom-up approach of emergent gravity [66]. Some important issues for the test
of emergent gravity [80] might be clarified by using monodromy evolving deformation [195]
on Plebanski type self dual Einstein equations, which are actually the EOM obtained from
the 2-dim chiral U(N) model in the large N limit and studying integrability.

Finally, we deal with the Taub-NUT metric, a special case of the anti-self-dual Bianchi-
IX spaces [116], whose emergent nature and connection with dynamical systems are discussed
in [37]. They are derived by applying the settings for this case to the classical Darboux-
Halphen system and solving the resulting dynamical equations. We have shown that the
Taub-NUT is comparable to Euclideanized Bertrand space-time with magnetic fields due to
shared geometry and conserved quantities, and a dual configuration as either Oscillator or
Kepler systems. Identical conserved quantities are related to identical symmetries and Killing
tensors embedded within, such as the Killing-Stäckel and Killing-Yano tensors, embedded
as co-efficients within the Laplace-Runge-Lenz and angular momentum vectors respectively.
The Killing-Yano tensors exhibit quaternionic algebra, hinting at a link between them and
hyperkähler structures matching the form of the KY tensors derived from the angular mo-
mentum, confirming that they are the same for Taub-NUT. Since space-time symmetries
are unaffected by Euclideanization, we can expect that all properties arising from shared
symmetries are also exhibited by Bertrand space-times with magnetic fields.

In special situations, self-dual Einstein Bianchi-IX metrics reduce to Taub-NUT de Sit-
ter metric with two parameters of the biaxial solutions respectively identified as the NUT
parameter and the cosmological constant. The Taub-NUT is anti-self dual, and expectedly,
Ricci-flat with topological invariants to compare with other possible diffeomorphically equiva-
lent Ricci-flat manifolds. According to Kronheimer classifications [196, 197] all 4-dimensional
hyperkähler metrics like Taub-NUT are anti-self dual, so the hyperkähler quotient construc-
tion, due to Hitchin, Karlhede, Lindstrom and Rocek [198] carries an anti-self dual conformal
structure, allowing Penrose’s Twistor theory [199] techniques to be applied in this case.

Recent work in emergent gravity [66] aims to construct a Riemannian geometry from
U(1) gauge fields on a noncommutative space-time. This construction is invertible to find
corresponding U(1) gauge fields on a (generalized) Poisson manifold given a metric (M, g).
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Detailed tests [80] of the emergent gravity provide explicit solutions in both gravity and
gauge theory perspectives. Symplectic U(1) gauge fields were derived starting from the
Eguchi-Hanson metric in 4-dimensional Euclidean gravity, precisely reproducing U(1) gauge
fields of the Nekrasov-Schwarz instanton previously derived from the top-down approach.
To clarify the role of noncommutativity of space-time in resolving space-time singularities
[194] in general relativity, the prescription was inverted. A gravitational metric was derived
from the Braden-Nekrasov U(1) instanton defined in ordinary commutative space-time, just
to show that the Kähler manifold determined by the Braden-Nekrasov instanton exhibits a
space-time singularity, while the Nekrasov-Schwarz instanton gives rise to a regular geometry
in the form of Eguchi-Hanson space.

We can speculate the possibility of getting U(1) gauge fields in the same way from the
Taub-NUT metric. A critical difference from the Eguchi-Hanson metric [88] is that the
Taub-NUT metric (3.5.1.10) is locally asymptotic at infinity to R3 × S1, belonging to the
class of asymptotically locally flat (ALF) spaces. Thus, the Hopf coordinates cannot rep-
resent the Taub-NUT metric, and it is difficult to naively generalize the same construction
to ALF spaces. According to gauge theory, it may be related to ALF spaces arising from
NC monopoles [200] whose underlying equation is defined by an S1-compactification of the
self(anti)-dual-instanton equation, the so-called Nahm equation. A possible inclusion of
Taub-NUT in the bottom-up approach of emergent gravity will be discussed in [201]. Only a
special choice of the NUT parameter gives us a regular metric, but singularities are generally
found at either end of the 4-dim radial coordinate. In the most generic case, for a partic-
ular choice of the azimuthal angle period, one can get away with the bolt-singularity. The
NUT singularity (co-dimension 4 orbifold singularity) stays, possibly admitting an M theory
interpretation associated with the corresponding non-abelian gauge symmetries [202].

Recently, Ricci flat metrics of ultrahyperbolic signature were constructed [203] with l-
conformal Galilei symmetry, involving an AdS2 part reminiscent of the near horizon geometry
of extremal black holes. Similarly, it should be interesting to see if Taub-NUT spaces are
associable with geodesics describing second order dynamical systems. Perhaps the most
interesting issue will be to explore if we can conjecture something like “Taub-NUT/CFT”
correspondence.

5.1.3 Chapter 4

The form of relativistic Lagrangian and equations of motion in [171] also used by Goldstein
[173], do not match with the formulations derived directly from solving for the geodesic from
the space-time metric. The latter formulation clearly reproduces the time dilation effects in a
potential field as observed in the phenomena of gravitational redshifts [181], while the former
does not. The Hamiltonian formulation shown in [172] applies only for weak potentials and
low momentum. We effectively managed to write a Lorentz-covariant form of equations of
motion in (4.2.2.16) for geodesics that does not match the classic non-relativistic form of
such equations and describe a relativistic deformation of the Euler-Lagrange equation.

Since the familiar Lorentz transformation was designed for the special case of special
relativity, where we deal with free particles without any potentials, it will not suffice in a more
general case where a particle accelerates under the influence of potentials. The solution was
to formulate a modified Lorentz transformation that will locally leave the metric invariant.
The fact that such a transformation is limited to work locally is not surprising, given that
according to the Equivalence principle, a curved space is locally diffeomorphically equivalent
to a flat space, where a regular Lorentz transformation would be valid.
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The Bohlin-Arnold duality [36, 30] is invalid for the relativistic oscillator under this direct
formulation due to the Γ factors in the equation of motion. However, it is possible to use a
semi-relativistic approximation for weak potential and low velocity to produce the type of
semi-relativistic Lagrangian in [171, 173]. Using such approximation, and replacing the time
with the proper time in the particle frame, the semi-relativistic equation of motion takes the
classical form, allowing the Bohlin-Arnold duality to be valid under this approximation.

We have written the relativistic version of the Liénard equation and Chiellini integrability
condition, and deduced its conserved quantity, Lagrangian and metric. The conserved quan-
tity was derived after first redefining the relativistically. The metric derived for the Liénard
oscillator implies spatially isotropic metrics with non-unity co-efficient function. Thus, if the
Schwarzschild, and most solutions to Einstein’s equations are rewritten to spatially isotropic
co-ordinates, they shall be found to exhibit damped motion, implying that dynamics of such
solutions can be examined as some form of the relativistic Liénard mechanical system.

So far, this article helps to revise and generalize our fundamental formulation of relativity,
while showing how familiar results can still be reproduced under suitable approximations.
The results of this chapter can be applied in future along the direction of canonical ADM
gravity and relativistic quantum mechanics as covered in articles like [204, 205] respectively.

5.2 Future Plans: Superintegrable and Dynamical Sys-

tems on Curved Spaces

When solving a mechanical system, its overall motion is decomposable into independent
motion along each of its degrees of freedom, described by independent ordinary differential
equations (ODEs). First integrals or conserved quantities of an autonomous system are
functions that maintain a constant value respective to the system. They play a central role
in the theory of such ODEs by reducing the effective dimensionality of the problem being
dealt with via a change of variables. In effect, each first integral is a solution of the equation
along a degree of freedom, having which reduces the number of independent ODEs one has
to solve by one, simplifying the problem.

If a sufficient number of first integrals are known, the dynamical system can be com-
pletely solved, and is referred to as an integrable system. If the number of available first
integrals exceeds the number of degrees of freedom, then the dynamical system is labelled
a “superintegrable” system. The availability of additional constants of motion reduces the
trajectories of the superintegrable system to lower dimensional submanifolds of the Arnold-
Liouville tori. Classical trajectories are closed curves in the case of maximally superintegrable
systems, where the number of globally independent integrals of motion increases to 2n− 1.
Bertrand’s theorem states that all bounded trajectories are closed only for two central po-
tentials: the Kepler, and the isotropic oscillator, providing a complete classification of 3-D
superintegrable systems with central potentials.

A compact and connected n-dimensional submanifold of a phase space determined by n
involutive first integrals is topologically equivalent to a n-dimensional torus via the celebrated
Arnold-Liouville theorem (in the general non-compact case, it is the product of a torus and
Euclidean space). Since there is no unique way to compute the first integrals, we employ
various methods to deduce them, which play a vital role in the probing of a dynamical
system. In this manner, we have successfully obtained the superintegrability structure of
many 3 or 4 dimensional systems.
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Generically all constants of motion of integrable and superintegrable systems are the
direct consequence of symmetries (in most cases, hidden symmetries); making it convenient
to study these symmetries geometrically (ie., symplectic formalism and Lie algebra of vector
fields). It also helps to study higher-order constants of motion; ie. Killing tensors K for
higher values of p. The Eisenhart lift has been related to the properties of Killing tensors
defined on the Riemannian space; making it also a topic worth studying. We are exploring
various geometrical techniques, such as master symmetry, action-angle method, Kaluza-Klein
reduction, etc, to study superintegrable systems. Furthermore, we wish to use the geometric
formalism introduced long ago by Eisenhart to explore the notion of superintegrability. The
concept of superintegrability can be further extended to geodesic motion over the Einstein-
Sasaki metric and the primary tool to that end are Killing and Killing-Yano tensors.

One of the challenges of Hamiltonian dynamics is to provide adequate mathematical tools
to describe chaotic dynamics in a system combining both regular and chaotic components.
There exist rigorous results that prove that the underlying systems most of the trajectories
are stable for all the time, it is the so well known KAM Theorem (Kolmogorov-Arnold-Moser)
or they are stable for very long times (Nekhoroshev). The mathematics of these areas are
tackled with a large set of non trivial and important tools as well as a bunch of consolidated
methods in dynamical systems: hyperbolic invariant objects and their connections (limit
cycles, isochrons, whiskered tori, NHIM, homoclinic orbits, etc.), normal forms, averaging
methods, KAM theorem, Lie symmetries etc. These involve both theory and numerics. My
targeted area is celestial mechanics, dynamical aspects of general relativity and cosmology.

5.2.1 Finsler geometry

Dynamical and Integrable Systems have so far been extensively studied in a classical and
non-relativistic description, where the system is defined by a classical Lagrangian that is
quadratic in velocity with scalar potentials on flat space. However, the study of dynamical
and integrable systems on curved spaces has not received sufficient attention. In this general
relativistic approach, we can describe curved spaces as perturbations created by potentials
about flat space, and the relativistic Lagrangian defining the system as the square-root of
the classical Lagrangian.

Under low velocity and weak potential approximations, the relativistic Lagrangian and
the mechanics that derive from it transforms into the classical equivalents. An attempt to
study relativistic dynamical and integrable systems in this approach has been made in [206].
However, some first integrals that have been deduced classically cannot be derived on curved
spaces, such as the Laplace-Runge-Lenz vector.

Finsler geometry is an extension of Riemannian metric geometry, based on a general
length measure L for curves γ formulated as:

L [γ] =

∫
F (γ, γ̇).

In 1941, G. Randers [19] introduced a Finsler metric by modifying a Riemannian metric
g = gij dx

i ⊗ dxj by a linear term b = bi(x)dxi, the resulting norm on the tangent space is
given by

F (x, y) =
√
gij(x)yiyj + bi(x)yi, y = yi∂xi ∈ TxM.

Now, we have so far seen that when measuring the length of a curve between two points in
a space-time, the form of the relativistic Lagrangian as shown in [206] is similar upto the

133



term in square roots of Rander’s Finsler metric.

l12 =

∫ 2

1

ds =

∫ 2

1

dτ
√
gij(x)yiyj.

When dealing with space-times involving vector-potential terms, such as stationary space-
times, it is possible under approximations to write the relativistic Lagrangian in Rander’s
form of the Finsler metric. I intend to study the relativistic mechanics and dynamics of such
systems in the Finsler geometry context.

5.2.2 3-body problems on curved spaces in the post-Newtonian
approximation

Recently, the detection of gravitational waves was a significant event in the study of general
relativity, experimentally confirming the existence of gravitational waves and the accuracy of
theories describing them. The detected gravitational waves were produced by the merging of
a pair of black holes, which describes a 2-body problem on curved space. I wish to go a step
further and proceed to the study of a 3-body problem on curved space, with the potentials
acting as perturbations in a post-Newtonian approximation, and the resulting gravitational
waves.

We wish to study the n-body problem in spaces of constant curvature, started by Diacu
[207, 208], who obtained the equations of motion for an arbitrary n number of bodies in 2008
[209]. This provided new criteria to determine the geometrical nature of physical space. The
problem for the case n = 2 was independently proposed by Bolyai and Lobachevsky, who
founded hyperbolic geometry.

In the usual linearized theory of gravity, the perturbations about the flat space-time
metric are taken upto first order approximation. In the post-Newtonian limit, we go further
beyond, from the second order onwards. Furthermore, since the study of gravitational waves
involves time dependent perturbations, it is necessary to apply the Eisenhart-Duval lift to
them to study dynamics on such spaces. I intend to study dynamics and gravitational waves
of 3-body problems by combining the post-Newtonian limit with the Eisenhart-Duval lift.
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Chapter 6

Appendices

6.1 t’Hooft symbols

Matrices representing the t’Hooft symbols would be given by :

η(+)1 =


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 η(+)2 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 η(+)3 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


(6.1.1)

η(−)1 =


0 0 0 −1
0 0 1 0
0 −1 0 0
1 0 0 0

 η(−)2 =


0 0 −1 0
0 0 0 −1
1 0 0 0
0 1 0 0

 η(−)3 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 1 0


(6.1.2)

which obey the following relations between themselves

3∑
i=1

η(±)i
µν η

(±)i
λγ = δµλδνγ − δµγδνλ ± εµνλγ (6.1.3)

[
η(±)i, η(±)j

]
µν

= −2εijkη(±)k
µν (6.1.4)

[
η(±)i, η(∓)j

]
µν

= 0 ⇒ η(±)i
µρ η(∓)j

ρν = η(±)j
νρ η(∓)i

ρµ (6.1.5)

{
η(±)i, η(±)j

}
µν

= −2δijδµν (6.1.6)

{
η(±)i, η(∓)j

}
µν

= 0 ⇒ η(±)i
µν η(∓)j

µν = 0 (6.1.7)

∴ η
(±)i
µλ η

(±)j
νλ = δijδµν + εijkη(±)k

µν (6.1.8)

εµνλγη
(±)i
γσ = ∓

(
δσλη

(±)i
µν + δσµη

(±)i
νλ − δσνη

(±)i
µλ

)
(6.1.9)

∴ εijkη(±)j
µν η(±)k

ρσ = δµση
(±)i
ρν − δνση(±)i

ρµ + δρµη
(±)i
νσ − δρνη(±)i

µσ (6.1.10)
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6.2 Basic Killing tensors from Holten’s Algorithm

6.2.1 Angular Momentum

If we choose to set C
(n)
{i} = 0, ∀ n ≥ 2, we get the Killing equations:

∇(iC
(1)
j) = 0 (6.2.1.1)

There are two parts of this solution we shall study in detail. We can write (6.2.1.1) as:

∇iC
(1)
j +∇jC

(1)
i = 0 ⇒ ∇iC

(1)
j = −∇jC

(1)
i (6.2.1.2)

This is an anti-symmetric matrix, written as θij = −θji. Further elaboration gives:

θij(~x) = εijk(~x)θk = gim(~x)εmjkθ
k

∴ −∇jC
(1)
i = gim(~x)εmjkθ

k ⇒ C
(1)
i = −gim(~x)εmjkθ

kxj

Thus, we have the rotation operator as the 1st order co-efficient:

C
(1)
i = −gim(~x)εmjkθ

kxj (6.2.1.3)

Applying this co-efficient into the 1st term of the power series, we get:

Q(1) = C
(1)
i Πi = −gim(~x)εmjkθ

kxjΠi

⇒ L.θ = −
(
εijkΠ

ixj
)
θk = (x×Π) .θ

∴ L = x×Π (6.2.1.4)

This eventually becomes the conserved quantity known as the angular momentum.

6.2.2 Laplace-Runge-Lenz vector

Now when we choose to set C
(n)
{i} = 0, ∀ n ≥ 3, we get the Killing equations:

∇iC
(2)
jk +∇jC

(2)
ki +∇kC

(2)
ij = 0 (6.2.2.1)

as we can see, (6.2.2.1) perfectly matches the property of the Killing Yano and Killing Stäckel
tensors. The Runge-Lenz like quantity is given by a symmetric sum as shown below:[

~A×
(
~B × ~C

)]
i

= εilmε
m
jkA

lBjCk εilmε
m
jk = δijδlk − δikδlj. (6.2.2.2)

∇kC
(2)
ij = εilm(~x)εmjk(~x)nl + (i↔ j)

= (2gij(~x)gkl(~x)− gik(~x)gjl(~x)− gil(~x)gkj(~x))nlxk,

∴ C
(2)
ij = (2gij(~x)nk − gik(~x)nj − gkj(~x)ni)x

k. (6.2.2.3)

As before, applying this co-efficient to the 2nd order term in the power series gives

Q(2) =
1

2
C

(2)
ij ΠiΠj =

{∣∣Π∣∣2 (n.x)− (Π.x) (Π.n)
}

= N .n =
{∣∣Π∣∣2x− (Π.x) Π

}
.n = {Π× (x×Π)} .n

∴ N = Π× (x×Π) (6.2.2.4)

This quantity is a term that is present in another conserved quantity known as the Laplace-
Runge-Lenz vector. Having found the two familiar types of conserved quantities, we can now
proceed to see what it looks like for the Taub-NUT metric.
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6.3 The Bohlin transformation

The Bohlin transformation that maps the co-ordinate system on a plane, is given by:

f : z −→ ξα = (zα)2 = Reiφ ⇒ z = ξ
1
2 (6.3.1)

Now we must note that another Noether invariant, the angular momentum will change form
under this transformation. We re-parameterize to preserve the form of angular momentum.

l = r2θ̇ = |z|2θ̇ = |ξ|2φ′ ⇒ |ξ|dτ̃
dτ
θ′ = |ξ|2θ′ (6.3.2)

∴ τ −→ τ̃ :
dτ̃

dτ
= |ξ| (6.3.3)

The velocity and acceleration can be given as:

żα =
1

2

|ξ|
(ξα)

1
2

ξα′ =
1

2

(
ξ̄α
) 1

2 ξα′ (6.3.4)

z̈α =
1

2
|ξ| d
dτ̃

{(
ξ̄α
) 1

2 ξα′
}

=
1

2

|ξ|2

(ξα)
1
2

ξα′′ +
1

4
(ξα)

1
2 |ξ′|2 (6.3.5)

The equation of motion for a Harmonic Oscillator eventually becomes:

m

{
1

2

|ξ|2

(ξα)
1
2

ξα′′ +
1

4
(ξα)

1
2 |ξ′|2

}
= −k (ξα)

1
2

⇒ |ξ|2ξα′′ + 1

2
ξα|ξ′|2 = −2k

m
ξα ⇒ ξα′′ = −

(
1

2
|ξ′|2 +

2k

m

)
ξα

|ξ|2
(6.3.6)

The Hamiltonian H of the oscillator can be re-written to complete the transformation:

H =
m

2
|ż|2 +

k

2
|z|2 =

m

4

(
1

2
|ξ′|2 +

2k

m

)
|ξ| ⇒

(
|ξ′|2

2
+

2k

m

)
=

4H
m

1

|ξ|
= κ

1

|ξ|

∴ ξα′′ = −
(
|ξα′|2

2
+

2k

m

)
ξα

|ξ|2
≡ −κ ξ

α

|ξ|3
(6.3.7)

showing that it restores the central force nature of the system, giving us the equation of
motion for inverse square law forces.
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6.4 Double derivative of Killing-Yano tensors

Similar to Killing vectors, rank n Killing-Yano tensors exhibit a curvature equation

(∇a∇b −∇b∇a)Kc1...cn =
n∑
i=1

Rabci
dKc1...d...cn . (6.4.1)

For the LHS of (3.2.3.3), by permuting the indices according to the rules, we will get

(∇a∇b −∇b∇a)Kc1...cn = −∇a∇c1Kbc2...cn +∇b∇c1Kac2...cn

= 2∇c1∇bKac2...cn −Rabc1
dKdc2...cn

+
n∑
i=2

(
Rbc1ci

dKac2...d...cn −Rac1ci
dKbc2...d...cn

)
= Rabc1

dKdc2...cn +
n∑
i=2

Rabci
dKc1...d...cn

2∇c1∇bKac2...cn = 2Rabc1
dKdc2...cn +

(
Rabci

dKc1...d...cn︸ ︷︷ ︸
I

+
n∑
i=2

Rac1ci
dKbc2...d...cn −Rbc1ci

dKac2...d...cn︸ ︷︷ ︸
II

) (6.4.2)

∵ ∇c1∇bKac2...cn = ∇c1∇[bKac2...cn],

Wc1 := ∇c1∇[bKac2...cn]e
a ∧ eb ∧ ec2 ... ∧ ecn .

On writing (6.4.2) as a 3-form, we can say that for I and II

I : Rabci
dea ∧ eb ∧ eci =

1

3

(
Rabci

d +Rbcia
d +Rciab

d
)
ea ∧ eb ∧ eci = 0

II : Rac1ci
dKbc2...d...cne

a ∧ eb ∧ eci = −Rc1cib
dKac2...d...cne

a ∧ eb ∧ eci .

Thus, on using Bianchi identity for curvature, II of (6.4.2) will become:

−
n∑
i=2

(
Rc1cib

d +Rbc1ci
d
)
Kac2...d...cne

a ∧ eb ∧ eci

=
n∑
i=2

Rcibc1
dKac2...d...cne

a ∧ eb ∧ eci

=
n∑
i=2

Rabc1
dKdc2...ci...cne

a ∧ eb ∧ eci = (n− 1)Rabc1
dKdc2...ci...cne

a ∧ eb ∧ eci .

Applying this result back in the main equation (6.4.2), we get:

2∇c1∇bKac2...cne
a ∧ eb ∧ eci =

[
2Rabc1

d + (n− 1)Rabc1
d
]
Kdc2...cne

a ∧ eb ∧ eci

2∇c1∇bKac2...cne
a ∧ eb ∧ eci = (n+ 1)Rabc1

dKdc2...cne
a ∧ eb ∧ eci .

Finally, we get the double-derivative of KY tensors as:

∴ ∇a∇bKc1c2...cn = (−1)n+1n+ 1

2
R[bc1|a|

dKc2c3...cn]d. (6.4.3)
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